首页> 外文会议>MRS Meeting >Dopant diffusion studies and free carrier lifetimes during rapid thermal processing of semiconductors
【24h】

Dopant diffusion studies and free carrier lifetimes during rapid thermal processing of semiconductors

机译:半导体快速热加工过程中掺杂剂扩散研究和自由载体寿命

获取原文

摘要

Rapid thermal processing of semiconductors involves significant photonic and subsequent thermal excitation. In the past, photonic excitation during rapid thermal annealing had been speculated to lead to significant enhancement of dopant diffusion or activation. In this work we present some experimental results indicating the absence of any such enhancement at high temperatures (~1000-1050°C) which most often are employed during the metal-oxide-semiconductor device processing. The implanted dopant (boron, arsenic or phosphorus) movement in silicon during different rapid thermal annealing conditions was studied using secondary ion mass spectroscopy (SIMS) technique. To understand the effect of point defects in controlling the diffusion process, the concentrations of charged and neutral point defects were calculated as a function of carrier concentration using previously published defect-carrier relations. The dependence of free carrier concentration on lattice perturbation parameters such as impurities and temperature was formulated and used in calculating carrier lifetimes (τ) in silicon. We qualitatively analyze two competing reactions, (i) the phonon release at the defect sites and (ii) the Auger electron process due to many electron interactions, to explain the apparent absence of any enhanced dopant diffusion. In our analyses, we obtain a highest free carrier lifetime of about 442 ns in the case of low dose (1e13/cm{sup}2) implanted sample during the transient stage (700°C) of the dopant activation cycle. The corresponding smallest (~17 fs) free carrier lifetime was obtained for the high dose implanted sample (dopants already activated) at 1000°C, the steady state part of an extended anneal cycle. Based on the detailed free carrier lifetime analyses, we suggest that any enhanced dopant activation or diffusion, at the best, may occur only at very low temperatures in the samples implanted with low doses of dopant atoms.
机译:半导体的快速热处理涉及显着的光子和随后的热激发。过去,已经推测了快速热退火期间的光子激发,以导致掺杂剂扩散或活化的显着增强。在这项工作中,我们提出了一些实验结果,其表明在金属氧化物 - 半导体器件处理期间最常采用的高温(〜1000-1050℃)处没有任何这种增强。使用二次离子质谱(SIMS)技术研究了不同快速热退火条件期间硅中的植入掺杂剂(硼,砷或磷)运动。为了理解点缺陷在控制扩散过程中的效果,使用先前公布的缺陷载波关系计算作为载体浓度的函数的浓度的计浓度。自由载体浓度对晶格扰动参数的依赖性,如杂质和温度的配制,并用于计算硅中的载体寿命(τ)。我们定性地分析了两种竞争反应,(i)由于许多电子相互作用,止损位点和(ii)螺旋电子过程的声子释放,以解释任何增强掺杂剂扩散的明显不存在。在我们的分析中,在掺杂剂活化循环的瞬态阶段(700℃)期间,在低剂量(1E13 / cm {sup} 2)植入样品的情况下,获得约442ns的最高自由载体寿命。对于高剂量注入的样品(已经活化)在1000℃,延伸退火循环的稳态部分获得相应的最小(〜17fs)游离载体寿命。基于详细的自由载体寿命分析,我们建议使用任何增强的掺杂剂激活或扩散,这可能仅在植入低剂量掺杂剂原子的样品中的非常低的温度下发生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号