首页> 外文会议>World Congress on Microwave and Radio Frequency Processing >New first principles of microwave-material interaction. discovering the role of the h field, and anisothermal reactions
【24h】

New first principles of microwave-material interaction. discovering the role of the h field, and anisothermal reactions

机译:微波材料相互作用的新原则。发现H场的作用,以及一种激发热反应

获取原文
获取外文期刊封面目录资料

摘要

While microwave processing of ceramics was extensively researched in the 1980's, no striking results with respect to interesting materials or enhanced kinetics, or understanding of the microwave mater interaction, was achieved. In the last several years, however, we have established a new and comprehensive equipment assemblage including special insulated cavities, continuous processing and laser-microwave combinations. This has led to basic scientific advances in the application of 2.450 and 0.915 GHz radiation to increase the kinetics of reaction of many inorganic material families: insulators, semi-conductors, and recently, most surprisingly, metals. Reaction-kinetics in the synthesis of many significant inorganic phases such as phosphors, pigments, and electroceramics (e.g. BaCO_3 + TiO_2) are increased by more than two orders of magnitude and shown to occur by different reaction paths because of the unique "anisothermal reaction" condition one can create in a microwave field. Benchmark achievements include: sintering at 1 atm pressure to transparent, fully dense ceramics, hydroxyapatite in 5 minutes and some key ceramics such as Al_2O_3, mullite, spinel, AlN, AlON in 20-30 minutes, and sintering of commercial WCCo cutting tool green blanks of all shapes and sizes to full density in <30 minutes. In all these cases the properties of the microwave sintered parts are markedly superior. Electroceramics of major families including multilayer capacitors with base metal (Ni, Cu) have been sintered in commercial lots giving superior properties. The most surprising and valuable result is the ability to sinter powder metal compacts, including some commercial samples supplied by several different companies, in less than 30 minutes to yield standard powder metal parts in net shape with superior properties.
机译:虽然在20世纪80年代广泛地研究了陶瓷的微波处理,但达到了有趣的材料或增强动力学的引人注目的结果,或者实现了对微波母体相互作用的影响。然而,在过去的几年中,我们已经建立了一种新的和全面的设备组合,包括特殊的绝缘腔,连续加工和激光微波组合。这导致了2.450和0.915 GHz辐射应用的基本科学进步,以增加许多无机物质家庭的反应动力学:绝缘体,半导体,最近,最令人惊讶的是金属。在合成许多显着的无机阶段的反应动力学如磷光体,颜料和电烧瓶(例如Baco_3 + TiO_2)的增加超过两个数量级,并且由于独特的“冒失热反应”而被不同的反应路径发生。条件可以在微波场中创建。基准成就包括:在5分钟内烧结1个atm压力,以透明,完全致密的陶瓷,5分钟内的羟基磷灰石,其中一些主要陶瓷,如al_2o_3,莫来石,尖晶石,aln,alon在20-30分钟内,以及商用WCCO切割工具绿色坯料的烧结。所有形状和大小为<30分钟的全密度。在所有这些情况下,微波烧结部件的性质明显优越。包括具有基础金属(Ni,Cu)的多层电容器包括多层电容器的主要家族的电陶器在商业批次中烧结,其具有优异的特性。最令人惊讶和有价值的结果是烧结金属块的能力,包括几家不同公司提供的一些商业样品,在不到30分钟的时间内,以产生具有优异性能的净形状的标准粉末金属部件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号