首页> 外文会议>IEEE International Conference on Bioinformatics and Biomedicine >Speeding up Collective Cell Migration Using Deep Reinforcement Learning
【24h】

Speeding up Collective Cell Migration Using Deep Reinforcement Learning

机译:使用深度强化学习加快集体细胞迁移

获取原文

摘要

Collective cell migration is a significant and complex phenomenon since it influences many fundamental biological processes. The coordination between leader cell and follower cell impact the speed of collective cell migration. However, there are still very few papers to study the effect of the stimulus signal released by the leader on the follower. Using 3D time-lapse microscopy image to keep track of the process of cell movement provides an unprecedented opportunity to systematically investigate and analysis collective cell migration. Traditional approach to study the process always based on reality scene, but are too time-consuming as the number of cells grows exponentially. Agent-based modeling is a robust framework that approximates cells as isotropic, elastic, and adhesive objects. In this paper, we use the agent-based modeling framework to build a simulation platform for cell movement. Its goal is to construct a biomimetic environment to prove the importance of stimulus signals between leader cell and follower cell. We use the recent popular deep reinforcement learning to train cells and to control the quantity of signal. By experimenting on single-follower and multi-follower, we get the conclusion that the number of stimulation signals is proportional to the speed of collective cell movement. This type of research provides a more diverse approach and thinking to study biological issues.
机译:集体细胞迁移是一个重要而复杂的现象,因为它影响了许多基本的生物过程。领导细胞与追随电池之间的协调影响集体细胞迁移的速度。然而,仍有很少的论文来研究追随者上领导者释放的刺激信号的效果。使用3D时间流逝显微镜图像来跟踪细胞运动的过程提供了一个前所未有的机会,可以系统地调查和分析集体细胞迁移。传统方法来研究过程总是基于现实场景,但由于细胞数量呈指数增长,太耗时了。基于代理的建模是一种强大的框架,其近似于各向同性,弹性和粘合物物体。在本文中,我们使用基于代理的建模框架来构建用于单元移动的仿真平台。其目标是构建仿生环境,以证明刺激信号与从动电池之间的刺激信号的重要性。我们使用近期流行的深度加固学习来训练细胞并控制信号量。通过对单追随器和多追随者进行实验,得出结论:刺激信号的数量与集体细胞运动的速度成比例。这种研究提供了一种更多样化的方法和思考生物问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号