首页> 外文会议>International Reliability Physics Symposium >In-situ calibration Of MEMS inertial sensors for long-term reliability
【24h】

In-situ calibration Of MEMS inertial sensors for long-term reliability

机译:MEMS惯性传感器的原位校准可确保长期可靠性

获取原文

摘要

Inertial sensors are pervasive in handheld electronics, UAVs, ioTs, and wearable electronics, as they enable motion awareness. MEMS inertial sensors have been successful at the SWAP corresponding to a few mm3volumes and a few milliwatts. However, the scale factor, the conversion factor between the measured rate and the output voltage, and the bias, the output voltage at zero rate, drift over time. This aging behavior prevents them from replacing more expensive and higher SWAP inertial sensors. In order to remedy the aging, an in-package calibration approach has been explored in our group. A piezoelectric multi-modal mechanical (X, Y, θz) stimuli stage capable of ≈ 100ppm precision, in-situ calibration of MEMS inertial sensors packaged on the stage is demonstrated. The calibration system is capable of extracting instantaneous scale factor, bias drifts and cross axis sensitivities of MEMS Coriolis force gyroscopes. The bulk PZT calibration stage is capable of generating non-resonant sinusoidal angular rates of 0 - 300deg/s for scale factor and bias measurements and X-Y in-plane acceleration stimulus of 0 - 90m/s2to extract the gyroscope in-plane acceleration sensitivities at 100VP, 0-250Hz drive voltage and frequencies. To achieve a long term stable calibration stage, an optical metrology system is used to calibrate the motion stage. The optical metrology system can ensure 10ppm stable stage metrology, to enable long term stable gyroscope calibration. The optical system uses an atomically stable laser source and a CMOS imager that can be potentially integrated in the same package as the calibration system, for closed loop control of the calibration stage.
机译:惯性传感器普遍存在于手持式电子设备,UAV,ioT和可穿戴电子设备中,因为它们可以实现运动感知。 MEMS惯性传感器已在SWAP上成功实现,相当于几毫米 3 体积和几毫瓦。但是,比例因子,测得的速率和输出电压之间的转换因子以及偏置(零速率下的输出电压)会随时间漂移。这种老化行为阻止他们更换更昂贵和更高的SWAP惯性传感器。为了解决老化问题,我们小组研究了一种封装内校准方法。压电多峰机械(X,Y,θ z )能够达到约100ppm精度的激励平台,并演示了封装在平台上的MEMS惯性传感器的原位校准。校准系统能够提取MEMS科里奥利力陀螺仪的瞬时比例因子,偏置漂移和跨轴灵敏度。整体PZT校准台能够生成0-300deg / s的非谐振正弦角速率,用于比例因子和偏置测量以及0-90m / s的X-Y平面内加速度激励 2 提取100V时陀螺仪的面内加速度灵敏度 P ,0-250Hz的驱动电压和频率。为了实现长期稳定的校准阶段,使用光学计量系统来校准运动平台。光学计量系统可以确保10ppm的稳定级计量,以实现长期稳定的陀螺仪校准。光学系统使用原子稳定的激光源和CMOS成像器,可以将其与校准系统集成在同一封装中,以实现对校准台的闭环控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号