首页> 外文会议>IEEE Computer Society Annual Symposium on VLSI >Accelerating Simulation of Particle Trajectories in Microfluidic Devices by Constructing a Cloud Database
【24h】

Accelerating Simulation of Particle Trajectories in Microfluidic Devices by Constructing a Cloud Database

机译:通过构建云数据库加速微流控设备中粒子轨迹的仿真

获取原文

摘要

Microfluidic cell sorters have shown great potential to revolutionize the current technique of enriching rare cells. In the past decades, different microfluidic cell sorters have been developed by researchers for separating circulating tumor cells, T-cells, and other biological markers from blood samples. However, it typically takes months or even years to design these microfluidic cell sorters by hand. Thus, researchers tend to use computer simulation (usually finite element analysis) to verify their designs before fabrication and experimental testing. Despite this, conducting precision finite element analysis of microfluidic devices is computationally expensive and labor-intensive. To address this issue, we recently presented a microfluidic simulation method that can simulate the behavior of fluids and particles in some typical microfluidic chips instantaneously. Our method decomposes the chip into channels and intersections. The behavior of fluid in each channel is determined by leveraging analogies with electronic circuits, and the behavior of fluid and particles in each intersection is determined by querying a database containing 92,934 pre-simulated channel intersections. While this approach successfully predicts the behavior of complex microfluidic chips in a fraction of the time required by existing techniques, we nonetheless identified three major limitations with this method: (1) the library of pre-simulated channel intersections is unnecessarily large (only 2,072 of 92,934 were used); (2) the library contains only cross-shaped intersections (and no other intersection geometries); and (3) the range of fluid flow rates in the library is limited to 0 to 2 cm/s. To address these deficiencies, in this work we present an improved method for instantaneously simulating the trajectories of particles in microfluidic chips. Firstly, inspired by dynamic programming, our new method optimizes the generation of pre-simulated intersection units and avoids generating unnecessary simulations. Secondly, we constructed a cloud database (http://cloud.microfluidics.cc) to share our pre-simulated results and to let users become contributors and upload their simulation results into the cloud database as a benefit to the whole microfluidic simulation community. Lastly, we investigated the impact of different channel angles and different fluid flow rates on predicting the trajectories of particles. We found a wide range of device geometries and flow rates over which our existing simulation results can be extended without having to perform additional simulations. Our method should accelerate the simulation of particles in microfluidic chips and enable researchers to design new microfluidic cell sorter chips more efficiently.
机译:微流体细胞分选仪已显示出巨大的潜力,可以改变目前富集稀有细胞的技术。在过去的几十年中,研究人员开发了各种微流体分选仪,用于从血液样本中分离循环中的肿瘤细胞,T细胞和其他生物标记。然而,手工设计这些微流体细胞分选仪通常需要数月甚至数年。因此,研究人员倾向于在制造和实验测试之前使用计算机仿真(通常是有限元分析)来验证其设计。尽管如此,对微流体装置进行精确的有限元分析在计算上是昂贵的并且费力的。为了解决这个问题,我们最近提出了一种微流体模拟方法,该方法可以即时模拟某些典型的微流体芯片中的流体和颗粒的行为。我们的方法将芯片分解为通道和交叉点。通过利用与电子电路的类比来确定每个通道中流体的行为,并通过查询包含92,934个预先模拟的通道交点的数据库来确定每个路口中流体和颗粒的行为。尽管此方法可以在现有技术所需的时间内成功预测复杂的微流控芯片的行为,但我们仍然使用此方法确定了三个主要限制:(1)预先模拟的通道交叉点库不必要地大(只有2,072个)使用了92,934个); (2)库仅包含十字形交叉点(不包含其他交叉点几何形状); (3)库中的流体流速范围限制为0到2 cm / s。为了解决这些不足,在这项工作中,我们提出了一种改进的方法,用于瞬时模拟微流控芯片中粒子的轨迹。首先,在动态编程的启发下,我们的新方法优化了预先模拟的相交单元的生成,并避免了生成不必要的模拟。其次,我们构建了一个云数据库(http://cloud.microfluidics.cc),以共享我们的预仿真结果,并让用户成为贡献者,并将他们的仿真结果上传到云数据库中,以使整个微流仿真社区受益。最后,我们研究了不同的通道角度和不同的流体流速对预测颗粒轨迹的影响。我们发现了广泛的设备几何形状和流速,可以在不执行其他模拟的情况下扩展我们现有的模拟结果。我们的方法应该加速微流控芯片中颗粒的模拟,并使研究人员能够更有效地设计新的微流控细胞分选仪芯片。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号