首页> 外文OA文献 >Manipulation of Cell and Particle Trajectory in Microfluidic Devices
【2h】

Manipulation of Cell and Particle Trajectory in Microfluidic Devices

机译:微流控设备中细胞和粒子轨迹的操纵。

摘要

Microfluidics, the manipulation of fluid samples on the order of nanoliters and picoliters, is rapidly emerging as an important field of research. The ability to miniaturize existing scientific and medical tools, while also enabling entirely new ones, positions microfluidic technology at the forefront of a revolution in chemical and biological analysis. There remain, however, many hurdles to overcome before mainstream adoption of these devices is realized. One area of intense study is the control of cell motion within microfluidic channels. To perform sorting, purification, and analysis of single cells or rare populations, precise and consistent ways of directing cells through the microfluidic maze must be perfected. The aims of this study focused on developing novel and improved methods of controlling the motion of cells within microfluidic devices, while simultaneously probing their physical and chemical properties. To this end we developed protein-patterned smart surfaces capable of inducing changes in cell motion through interaction with membrane-bound ligands. By linking chemical properties to physical behavior, protein expression could then be visually identified without the need for traditional fluorescent staining. Tracking and understanding motion on cytotactic surfaces guided our development of new software tools for analyzing this motion. To enhance these cell-surface interactions, we then explored methods to adjust and measure the proximity of cells to the channel walls using electrokinetic forces and 3D printed microstructures. Combining our work with patterned substrates and 3-dimensional microfabrication, we created micro-robots capable of rapid and precise movements via magnetic actuation. The micro-robots were shown to be effective tools for mixing laminar flows, capturing or transporting individual cells, and selectively isolating cells on the basis of size. In the course of development of these microfluidic tools we gained valuable new insights into the differences and limitations of planar vs. 3D lithography, especially for fabrication of magnetic micro-machines. This work as a whole enables new mechanisms of control within microfluidics, improving our ability to detect, sort, and analyze cells in both a high throughput and high resolution manner.
机译:微流体技术,以纳升和皮升级的数量处理流体样品,正在迅速成为一个重要的研究领域。微型化现有科学和医学工具的能力,同时还可以实现全新的工具,将微流体技术置于化学和生物分析革命的前沿。但是,在实现这些设备的主流采用之前,仍有许多障碍需要克服。深入研究的领域之一是控制微流体通道内的细胞运动。为了对单个细胞或稀有种群进行分类,纯化和分析,必须完善精确且一致的引导细胞通过微流体迷宫的方法。这项研究的目的集中在开发新颖和改进的方法来控制微流控设备中的细胞的运动,同时探测其物理和化学性质。为此,我们开发了蛋白质模式的智能表面,该表面可通过与膜结合的配体相互作用来诱导细胞运动的变化。通过将化学性质与物理行为联系起来,可以在不需要传统荧光染色的情况下从视觉上识别蛋白质表达。在细胞定向表面上跟踪和理解运动指导了我们开发用于分析该运动的新软件工具。为了增强这些细胞表面的相互作用,我们然后探索了利用电动势和3D打印的微结构来调整和测量细胞与通道壁的接近度的方法。将我们的工作与带图案的基板和3D微细加工相结合,我们创造了能够通过磁驱动快速而精确地运动的微型机器人。微型机器人被证明是混合层流,捕获或运输单个细胞以及根据大小选择性分离细胞的有效工具。在开发这些微流体工具的过程中,我们获得了有关平面光刻与3D光刻技术(尤其是磁性微机械制造)的区别和局限性的宝贵新见解。这项工作总体上实现了微流体控制的新机制,从而提高了我们以高通量和高分辨率方式检测,分类和分析细胞的能力。

著录项

  • 作者

    Edington Collin;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号