首页> 外文会议>IEEE International Conference on Plasma Sciences >Microwave plasma-assisted deposition of boron doped single crystal diamond
【24h】

Microwave plasma-assisted deposition of boron doped single crystal diamond

机译:微波等离子体辅助沉积硼掺杂单晶金刚石

获取原文

摘要

The homoepitaxial growth of diamond on single crystal substrates is done using microwave plasma-assisted chemical vapor deposition with a hydrogen-methane plasma. The doping of the deposited diamond with boron makes it a p-type semiconductor and with phosphorus makes it an n-type semiconductor. The doping of diamond is done to make diamond electronic devices. Diamond is of interest for electronics as it has a wide bandgap (5.4 eV), the highest thermal conductivity of all solid materials at room temperature, a high electric field breakdown strength (10 MV/cm), and high hole and electron carrier mobilities. This presentation will describe the boron doping of diamond by adding diborane into the feedgas of the plasma discharge. For electronic devices controlled doping levels of the boron in the diamond from 1015 cm-3 up to above 1020 cm-3 are desired. The primary control of the doping level is the amount of diborane added to the feedgas. Levels of diborane concentrations in the feedgas as measured by the [B]/[C] ratio in the feedgas range from 0.3 ppm to over 1000 ppm in our study. While the diborane concentration in the feedgas is of primary importance many other factors are also important to the boron concentration in the diamond including residual boron in the deposition system from previous runs, temperature of the substrate, preparation of the substrate, and conditions of the plasma discharge including its power density and pressure. An additional consideration in the doping of diamond is keeping unwanted impurities out of the deposition process. This is especially true of nitrogen impurities which are easily incorporated into the diamond during deposition and which compensates the boron doping, especially at low boron doping concentrations. This presentation will discuss measures taken in the design and operation of a microwave plasma diamond deposition system to control the boron doping and reduce the unwanted impurities.
机译:金刚石在单晶衬底上的同质外延生长是利用微波等离子体辅助的化学气相沉积和氢-甲烷等离子体完成的。用硼掺杂沉积的金刚石使其成为p型半导体,并且用磷掺杂使其成为n型半导体。掺杂钻石是为了制造钻石电子设备。金刚石对于电子学来说很重要,因为它具有较宽的带隙(5.4 eV),室温下所有固体材料的最高热导率,高的电场击穿强度(10 MV / cm)以及高的空穴和电子载流子迁移率。本演讲将描述通过将乙硼烷添加到等离子体放电的原料气中来掺杂金刚石的硼。对于电子设备,期望金刚石中硼的掺杂水平从1015 cm-3到最高1020 cm-3以上。掺杂水平的主要控制是添加到原料气中乙硼烷的量。在我们的研究中,通过原料气中[B] / [C]比测量的原料气中乙硼烷浓度水平为0.3 ppm至1000 ppm以上。尽管进料气中乙硼烷的浓度至关重要,许多其他因素对金刚石中的硼浓度也很重要,包括先前运行中沉积系统中残留的硼,基材的温度,基材的制备以及等离子体的条件放电,包括其功率密度和压力。掺杂金刚石时的另一个考虑是将不需要的杂质排除在沉积过程之外。对于氮杂质而言尤其如此,氮杂质易于在沉积过程中掺入金刚石中,并且可以补偿硼掺杂,尤其是在低硼掺杂浓度下。本演讲将讨论在微波等离子体金刚石沉积系统的设计和操作中采取的措施,以控制硼掺杂并减少有害杂质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号