首页> 外文会议>IEEE International Conference on Plasma Sciences >Microwave plasma-assisted deposition of boron doped single crystal diamond
【24h】

Microwave plasma-assisted deposition of boron doped single crystal diamond

机译:微波等离子体辅助沉积硼掺杂单晶金刚石

获取原文
获取外文期刊封面目录资料

摘要

The homoepitaxial growth of diamond on single crystal substrates is done using microwave plasma-assisted chemical vapor deposition with a hydrogen-methane plasma. The doping of the deposited diamond with boron makes it a p-type semiconductor and with phosphorus makes it an n-type semiconductor. The doping of diamond is done to make diamond electronic devices. Diamond is of interest for electronics as it has a wide bandgap (5.4 eV), the highest thermal conductivity of all solid materials at room temperature, a high electric field breakdown strength (10 MV/cm), and high hole and electron carrier mobilities. This presentation will describe the boron doping of diamond by adding diborane into the feedgas of the plasma discharge. For electronic devices controlled doping levels of the boron in the diamond from 1015 cm-3 up to above 1020 cm-3 are desired. The primary control of the doping level is the amount of diborane added to the feedgas. Levels of diborane concentrations in the feedgas as measured by the [B]/[C] ratio in the feedgas range from 0.3 ppm to over 1000 ppm in our study. While the diborane concentration in the feedgas is of primary importance many other factors are also important to the boron concentration in the diamond including residual boron in the deposition system from previous runs, temperature of the substrate, preparation of the substrate, and conditions of the plasma discharge including its power density and pressure. An additional consideration in the doping of diamond is keeping unwanted impurities out of the deposition process. This is especially true of nitrogen impurities which are easily incorporated into the diamond during deposition and which compensates the boron doping, especially at low boron doping concentrations. This presentation will discuss measures taken in the design and operation of a microwave plasma diamond deposition system to control the boron doping and reduce the unwanted impurities.
机译:使用微波等离子体辅助化学气相沉积与氢甲烷等离子体进行单晶衬底上的金刚石的同性端生长。用硼沉积的金刚石的掺杂使其成为p型半导体,并且磷使其成为n型半导体。钻石的掺杂是为了制造钻石电子设备。金刚石是用于电子器件的兴趣,因为它具有宽的带隙(5.4电子伏特),在室温下的所有固体材料的导热率最高,高电场击穿强度(10 MV / cm)的,和高的空穴和电子载流子迁移率。该呈现将通过将二硼烷添加到等离子体放电的饲料中来描述金刚石的硼掺杂。对于电子设备,期望将金刚石中的硼的控制掺杂水平为1015cm-3至高于1020cm-3。掺杂水平的主要控制是加入给代料的二硼烷的量。通过饲料中的[B] / [C]比率测量的含二硼烷浓度的水平为我们的研究中的0.3ppm至超过1000ppm。虽然含量的二硼烷浓度是主要重要的,但是许多其他因素对金刚石中的硼浓度也重要,包括沉积系统中的残留硼,基板的温度,基板的制备和等离子体的条件放电包括其功率密度和压力。在金刚石的掺杂中进行了额外的考虑,使不需要的杂质从沉积过程中保持。氮杂质尤其如此,这在沉积期间容易掺入金刚石中并且补偿硼掺杂,特别是在低硼掺杂浓度下。本演示文献将讨论在微波等离子体金刚石沉积系统的设计和操作中采取的措施,以控制硼掺杂并减少不需要的杂质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号