首页> 外文会议>Conference on microfluidics, bioMEMS, and medical microsystems XII >Ultralow-loss Waveguide Crossings for the Integration of Microfluidics and Optical Waveguide Sensors
【24h】

Ultralow-loss Waveguide Crossings for the Integration of Microfluidics and Optical Waveguide Sensors

机译:微流体和光波导传感器集成的超低损耗波导交叉

获取原文

摘要

Integrating photonic waveguide sensors with microfluidics is promising in achieving high-sensitivity and cost-effective biological and chemical sensing applications. One challenge in the integration is that an air gap would exist between the microfluidic channel and the photonic waveguide when the micro-channel and the waveguide intersect. The air gap creates a path for the fluid to leak out of the micro-channel. Potential solutions, such as oxide deposition followed by surface planarization, would introduce additional fabrication steps and thus are ineffective in cost. Here we propose a reliable and efficient approach for achieving closed microfluidic channels on a waveguide sensing chip. The core of the employed technique is to add waveguide crossings, i.e., perpendicularly intersecting waveguides, to block the etched trenches and prevent the fluid from leaking through the air gap. The waveguide crossings offer a smooth interface for microfluidic channel bonding while bring negligible additional propagation loss (0.024 dB/crossing based on simulation). They are also efficient in fabrication, which are patterned and fabricated in the same step with waveguides. We experimentally integrated microfluidic channels with photonic crystal (PC) microcavity sensor chips on silicon-on-insulator substrate and demonstrated leak-free sensing measurement with waveguide crossings. The microfluidic channel was made from polydimethylsiloxane (PDMS) and pressure bonded to the silicon chip. The tested flow rates can be varied from 0.2 μL/min to 200 μL/min. Strong resonances from the PC cavity were observed from the transmission spectra. The spectra also show that the waveguide crossings did not induce any significant additional loss or alter the resonances.
机译:将光子波导传感器与微流体集成在实现高度灵敏度和经济高效的生物和化学传感应用方面具有很大的承诺。一体化中的一个挑战是当微通道和波导相交时微流体通道和光子波导之间存在气隙。气隙产生流体的路径,以将微通道泄漏出来。诸如氧化物沉积之后的潜在溶液,然后是表面平坦化,将引入额外的制造步骤,因此成本无效。在这里,我们提出了一种可靠而有效的方法,可以实现在波导传感芯片上实现封闭的微流体通道。所采用技术的核心是添加波导交叉,即垂直交叉的波导,以阻止蚀刻沟槽并防止流体通过气隙泄漏。波导交叉向微流体通道粘合提供光滑的界面,同时带来可忽略的额外传播损失(基于模拟0.024dB /交叉)。它们在制造中也有效,其在与波导的相同步骤中被图案化和制造。我们在绝缘体上的光子晶体(PC)微腔传感器芯片上进行实验集成了微流体通道,并用波导交叉显示出无泄漏感测测量。微流体通道由聚二甲基硅氧烷(PDMS)制成,并将压力粘合到硅芯片上。测试的流速可以从0.2μl/ min变化至200μl/ min。从传输光谱观察到来自PC腔的强谐振。光谱还表明波导交叉未诱导任何显着的额外损耗或改变共振。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号