首页> 外文会议>Conference on microfluidics, bioMEMS, and medical microsystems XII >Ultralow-loss Waveguide Crossings for the Integration of Microfluidics and Optical Waveguide Sensors
【24h】

Ultralow-loss Waveguide Crossings for the Integration of Microfluidics and Optical Waveguide Sensors

机译:超低损耗波导交叉点,用于微流控和光波导传感器的集成

获取原文

摘要

Integrating photonic waveguide sensors with microfluidics is promising in achieving high-sensitivity and cost-effective biological and chemical sensing applications. One challenge in the integration is that an air gap would exist between the microfluidic channel and the photonic waveguide when the micro-channel and the waveguide intersect. The air gap creates a path for the fluid to leak out of the micro-channel. Potential solutions, such as oxide deposition followed by surface planarization, would introduce additional fabrication steps and thus are ineffective in cost. Here we propose a reliable and efficient approach for achieving closed microfluidic channels on a waveguide sensing chip. The core of the employed technique is to add waveguide crossings, i.e., perpendicularly intersecting waveguides, to block the etched trenches and prevent the fluid from leaking through the air gap. The waveguide crossings offer a smooth interface for microfluidic channel bonding while bring negligible additional propagation loss (0.024 dB/crossing based on simulation). They are also efficient in fabrication, which are patterned and fabricated in the same step with waveguides. We experimentally integrated microfluidic channels with photonic crystal (PC) microcavity sensor chips on silicon-on-insulator substrate and demonstrated leak-free sensing measurement with waveguide crossings. The microfluidic channel was made from polydimethylsiloxane (PDMS) and pressure bonded to the silicon chip. The tested flow rates can be varied from 0.2 μL/min to 200 μL/min. Strong resonances from the PC cavity were observed from the transmission spectra. The spectra also show that the waveguide crossings did not induce any significant additional loss or alter the resonances.
机译:将光子波导传感器与微流控技术集成在一起,有望在实现高灵敏度和经济高效的生物和化学传感应用中获得成功。集成中的一个挑战是,当微通道和波导相交时,在微流体通道和光子波导之间将存在气隙。气隙为流体泄漏出微通道创造了一条路径。潜在的解决方案,例如氧化物沉积,然后进行表面平坦化,将引入额外的制造步骤,因此成本无效。在这里,我们提出了一种可靠且有效的方法,用于在波导传感芯片上实现封闭的微流体通道。所采用技术的核心是增加波导交叉点,即垂直相交的波导,以阻挡蚀刻的沟槽并防止流体通过气隙泄漏。波导交叉点为微流通道键合提供了平滑的界面,同时带来了可忽略的额外传播损耗(0.024 dB /基于仿真的交叉点)。它们的制造效率也很高,可以与波导在同一步骤中进行构图和制造。我们在绝缘体上硅衬底上实验性地将微流体通道与光子晶体(PC)微腔传感器芯片集成在一起,并展示了具有波导交叉点的无泄漏传感测量。微流体通道由聚二甲基硅氧烷(PDMS)制成,并压力键合到硅芯片上。测试的流速可以在0.2μL/ min至200μL/ min之间变化。从透射光谱观察到来自PC腔的强共振。光谱还表明,波导交叉不会引起任何明显的附加损耗或改变谐振。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号