首页> 外文会议>ASME Internal Combustion Engine Division technical conference >ANALYSIS OF ENGINE AIR HANDLING SYSTEMS FOR LIGHT-DUTY COMPRESSION IGNITION ENGINES USING 1-D CYCLE SIMULATION: ACHIEVING HIGH DILUTION LEVELS FOR ADVANCED COMBUSTION
【24h】

ANALYSIS OF ENGINE AIR HANDLING SYSTEMS FOR LIGHT-DUTY COMPRESSION IGNITION ENGINES USING 1-D CYCLE SIMULATION: ACHIEVING HIGH DILUTION LEVELS FOR ADVANCED COMBUSTION

机译:使用1-D循环模拟的轻型压缩点火发动机发动机空气处理系统:实现高级燃烧的高稀释水平

获取原文

摘要

Previous research studies have shown that low temperature combustion (LTC) strategies are capable of achieving very low NOx and soot emissions while maintaining high thermal efficiency. To achieve LTC, there has to be sufficient mixing time between the fuel and air in a dilute, yet overall lean, environment. Dilution with a combination of fresh air and exhaust gas recirculation (EGR) is typically used to achieve longer mixing times and reduce the peak combustion temperatures. However, there are challenges associated with today's engine air handling systems' ability to move large combinations of EGR and air simultaneously. As the EGR demand is increased to reduce NOx emissions or retard combustion phasing, the global equivalence ratio tends to increase because of the boosting systems' limited ability to supply fresh air. In this study, a one-dimensional engine modeling approach was used to analyze the behavior of a production light duty diesel engine equipped with a variable geometry turbocharger and a high-pressure loop EGR system under LTC conditions. The model is used to predict the global equivalence ratio as a function of the EGR level at a variety of operating conditions. The EGR level was varied from 0 to 50% at speeds ranging from 1,500 to 2,500 rpm and loads from 2 to 10 bar brake mean effective pressure. The objective of this study is to evaluate the air handling system's capability of driving high amounts of EGR and air simultaneously for light duty engines to successfully achieve LTC operation over a large portion of the operating space. The results of the simulations show that at light loads, large amounts of EGR can be used while maintaining globally lean operation. However, as the engine load increases, a globally stoichiometric condition is reached relatively quickly, and high engine loads with greater than 30% EGR and overall lean conditions were achievable.
机译:以前的研究表明,低温燃烧(LTC)策略能够实现非常低的NOx和烟灰排放,同时保持高热效率。为了实现LTC,燃料和空气之间必须足够的混合时间,稀释,但整体瘦环境。用新鲜空气和废气再循环(EGR)的组合稀释通常用于实现更长的混合时间并降低峰燃烧温度。然而,与当今发动机空气处理系统的能力同时移动大型egr和空气的能力存在挑战。随着EGR的需求增加以减少NOx排放或延迟燃烧序列,由于系统提供了新的空气的有限能力,全局等价比趋于增加。在该研究中,使用一维发动机建模方法来分析配备有可变几何涡轮增压器和LTC条件下的高压环EGR系统的生产轻型柴油发动机的行为。该模型用于将全局等效比预测在各种操作条件下的EGR水平的函数。 EGR水平在0至50%的速度范围为1,500至2,500rpm,并且从2到10巴制动器的载荷平均有效压力。本研究的目的是评估空气处理系统的能力,同时为轻型发动机同时驱动大量EGR和空气,以在大部分操作空间上成功实现LTC操作。模拟结果表明,在轻度负载下,可以使用大量EGR,同时保持全球稀薄操作。然而,随着发动机负荷的增加,相对迅速达到全球化学计量状态,并且可以实现高于30%EGR和整体贫条件的高发动机负荷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号