首页> 外文学位 >Optimization of the air handling system of a multi-cylinder light duty engine running on reactivity controlled compression ignition - A simulation study.
【24h】

Optimization of the air handling system of a multi-cylinder light duty engine running on reactivity controlled compression ignition - A simulation study.

机译:在反应性控制的压燃下运行的多缸轻型发动机的空气处理系统的优化-模拟研究。

获取原文
获取原文并翻译 | 示例

摘要

Low Temperature Combustion (LTC) Strategies such as Reactivity Controlled Compression Ignition (RCCI) are highly sensitive to intake conditions, which are influenced by the gas exchange process. Because the gas exchange process is dependent on air handling system characteristics, optimizing the air handling system for improved RCCI engine performance is necessary. Major objectives were: 1. Improve combustion efficiency while mitigating unburnt hydrocarbon (UHC) and carbon monoxide (CO) emissions at low load, 2. Determine system parameters and configurations for high loads and 3. Examine variable valve actuation (VVA) and manifold redesign to maximize fuel efficiency. Zero-dimensional, one-dimensional and multi-dimensional models were used in this simulation study. Early Exhaust Valve Opening (EEVO) using fully flexible variable valvetrains and cam-phasers, and cylinder deactivation were evaluated for their impact on aftertreatment efficiency and fuel economy at low load. For near-idle conditions, cylinder deactivation in which only one cylinder was fired gave the best fuel economy and catalyst efficiency. For the second objective of performing high load system simulation, a low pressure (LP) EGR circuit was incorporated into the engine model. High Pressure EGR could not be used for high loads as the pre-turbine pressure was insufficient to drive EGR flow. Moreover, insufficient exhaust energy would be available to the turbine, resulting in lower boost pressures.;For the final objective, the stock exhaust manifold was redesigned using the Divided Exhaust Period (DEP) concept by splitting it into two manifolds, one connected to each exhaust valve. By using VVA to separately actuate the valves, overlap between the valves was varied, changing the exhaust distribution between the two manifolds, and thereby regulating boost pressure. With DEP, due to lower overall backpressures, pumping penalty decreased, but the pumping benefit was negated by parasitic losses from the supercharger which had to compensate for the boost deficit. Replacing the fixed geometry turbocharger with a variable geometry turbocharger (VGT) improved the Brake Specific Fuel Consumption (BSFC) over the base engine by 1%, while bypassing the turbine at low load gave elevated exhaust gas temperatures for thermal management.
机译:诸如反应性控制压缩点火(RCCI)之类的低温燃烧(LTC)策略对进气条件高度敏感,进气条件受气体交换过程的影响。由于气体交换过程取决于空气处理系统的特性,因此有必要对空气处理系统进行优化以提高RCCI发动机性能。主要目标是:1.提高燃烧效率,同时减少低负荷下的未燃烧碳氢化合物(UHC)和一氧化碳(CO)排放; 2.确定高负荷下的系统参数和配置; 3.检查可变气门致动(VVA)和歧管重新设计使燃油效率最大化。在此模拟研究中使用了零维,一维和多维模型。评估了使用完全灵活的可变气门机构和凸轮相位器的早期排气门开启(EEVO)以及气缸停用对低负荷后处理效率和燃油经济性的影响。在接近怠速的情况下,仅点火一个汽缸的汽缸停用可提供最佳的燃油经济性和催化剂效率。为了执行高负载系统仿真的第二个目标,在发动机模型中集成了低压(LP)EGR回路。高压EGR无法用于高负载,因为涡轮机前压力不足以驱动EGR流量。此外,涡轮机将无法获得足够的排气能量,从而导致较低的增压压力。最终目标是使用分排气时间(DEP)概念重新设计库存排气歧管,方法是将其分成两个歧管,每个歧管连接一个排气阀。通过使用VVA分别致动气门,可以改变气门之间的重叠,从而改变两个歧管之间的排气分布,从而调节增压压力。使用DEP时,由于总体背压较低,因此抽水损失减少,但是由于增压器的寄生损失(必须补偿增压不足)而抵消了抽水收益。用可变几何形状的涡轮增压器(VGT)代替固定几何形状的涡轮增压器可使基础发动机的制动比燃油消耗(BSFC)降低1%,而在低负载下绕过涡轮则可提高废气温度以进行热管理。

著录项

  • 作者

    Bharath, Anand Nageswaran.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Mechanical engineering.;Transportation.;Automotive engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 285 p.
  • 总页数 285
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号