【24h】

Low power green electronic devices

机译:低功率绿色电子设备

获取原文

摘要

The IC chips consume a large amount of energy globally and will continue to increase in the near future. The present IC is a charge-based technology that has logic and memory functions to mimic the human brain. To operate the IC at higher speed, the CMOS inverter of logic IC needs to deliver higher current to charge the capacitors. Thus higher inversion charge (Qinv) is required in CMOS devices. The conventional method to increase Qinv in MOSFET is to scale down the gate oxide thickness (tox) that also improves the short channel effect. Unfortunately, the scaling tox has reached an ultra-thin thickness of ∼1.2 nm at 65 nm node CMOS, which causes high gate leakage and DC power (PDC) consumption by direct quantum-mechanical tunneling. Alternatively, higher Qinv can also be obtained by using high dielectric constant (κ) from fundamental physics of Q=CV. We pioneered the high-κ gate dielectric CMOS starting 1998. Nevertheless, the unwanted high transistor threshold voltage (Vt) is the major challenge. Using unique dipole charge of La2O3 and Al2O3 high-κ dielectrics, low Vt n- and p-MOSFETs were achieved at 0.6∼0.9 nm equivalent-oxide thickness (EOT). Such La2O3 and Al2O3 high-κ dielectrics have been successfully implemented in 32-nm gate-first CMOS manufacture. To further lower the AC power (PAC) of CV2/2, we invented the small EG defect-free Ge-on-Insulator (GOI or GeOI) MOSFET. The 2.5X higher hole mobility and 1.6X better electron mobility were reached in Ge CMOS at 1∼1.4 nm EOT that enable the high-performance Ge logic at lower Vd and PAC. The PAC can be further lowered down by our initiated 3-dimensional (3D) IC based on the Ge CMOS. Low PAC non-volatile memory is also requi- ed for IC function. Applying high-κ dielectrics into flash memory, fast 100 μs speed and low write voltage of ∼10 V were achieved and listed in the Intl. Technology Roadmap for Semiconductors (ITRS). Such high-κ layers can improve the controllability of charge-storage layer and realize simpler planar structure. At present, the high-κ flash memory has been successfully implemented at 20 nm 128 Gb array manufacture. These high-κ CMOS and flash memory realize the low power green electronic devices.
机译:IC芯片在全球上消耗大量能源,并将在不久的将来继续增加。本IC是一种基于电荷的技术,具有模拟人脑的逻辑和记忆功能。为了以更高的速度操作IC,CMOS逆变器的逻辑IC需要提供更高电流以对电容器充电。因此,在CMOS器件中需要更高的反转电荷(QINV)。在MOSFET中增加QinV的传统方法是缩小栅极氧化物厚度(TOX),这也提高了短信效应。不幸的是,缩放Tox在65nm节点CMOS中达到了超薄厚度〜2nm,通过直接量子机械隧道引起高栅极泄漏和直流电源(PDC)消耗。或者,还可以通过使用来自Q = CV的基本物理学的高介电常数(κ)来获得更高的QinV。我们启动了1998年开始的高κ门电介质CMOS。然而,不需要的高晶体管阈值电压(VT)是主要的挑战。使用La2O3和Al2O3高κ电介质的独特偶极电荷,低Vt N-和P-MOSFET以0.6〜0.9nm等效氧化物厚度(EOT)实现。这种La2O3和Al2O3高κ电介质已经成功地在32-nm栅极 - 第一CMOS制造中实现。为了进一步降低CV 2 / 2的AC电源(PAC),我们发明了小的例如无缺陷的GE-ON-INSULULOR(GOI或GEOI)MOSFET。在GE CMOS中,在1〜1.4 nm Eot的GE CMOS中达到2.5倍更高的孔移动性和1.6倍更好的电子迁移率,使得较低VD和PAC的高性能GE逻辑。 PAC可以通过基于GE CMOS的引发的三维(3D)IC进一步下降。对于IC函数,还需要低PAC非易失性存储器。将High-κ电介质应用于闪存,速度快100μs速度和低写电压〜10V在INTL中列出。半导体技术路线图(ITRS)。这种高κ层可以提高电荷存储层的可控性,实现更简单的平面结构。目前,高κ闪存已成功实现在20nm 128 GB阵列制造中。这些高κCMOS和闪存实现了低功耗绿色电子设备。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号