首页> 外文会议>Progress in electromagnetics research symposium >A High-Q Linear CMOS Digitally Controlled Accumulation-mode Varactor Array for Multiband RF Circuits
【24h】

A High-Q Linear CMOS Digitally Controlled Accumulation-mode Varactor Array for Multiband RF Circuits

机译:用于多频带RF电路的高Q线性CMOS数字控制累积模式变容阵列

获取原文

摘要

Electronically tunable capacitors are key elements for tunable and reconfigurable RF circuits. The most popular tunable capacitor topologies in CMOS are the analog varactor and digitally controlled switched capacitor array (SCA). The conventional analog varactor shows a high quality factor (Q-factor) in both the minimum capacitance (C_(min)) and the maximum capacitance (C_(max)) states with a wide tuning range, but it has a poor linearity performance due to the voltage dependent nonlinear capacitance. In case of the digitally controlled SCA, while it shows a very good linearity, its Q-factor in C_(min) state is strongly dependent on the substrate loss by the parasitic junction capacitances between P-well, deep N-well, and P-substrate and the substrate resistance. Especially, if the SCA is implemented in a standard digital CMOS process without deep N-well, it suffers from severe Q-factor degradation in C_(min) state at higher frequencies. In order to overcome the aforementioned drawbacks of the analog varactor and the digitally controlled SCA, the digitally controlled binary-weighted accumulation-mode varactor array (AVA) is proposed. Contrast to the conventional analog varactor tuned by continuous analog voltage, the proposed AVA uses only two states of C_(min) and C_(max) of the analog varactor by digitally on/off control. Instead of a zero voltage reference, the negative voltage (-VDD) is applied to the gate of the analog varactor in C_(min) state in order to maximize the tuning range, power handling capability, and linearity. The total capacitance varies by turning on (+ VDD) or off (-VDD) each branch of the proposed AVA. The proposed AVA keeps a high Q-factor in all states even if it is implemented in a standard digital CMOS process without deep N-well, while showing comparable linearity performance in comparison with the conventional SCA. In simulation, Q-factor at 2.4 GHz is greater than 70 over all states and the tuning range is about 3.1.
机译:电子可调谐电容器是可调谐和可再配置RF电路的关键元件。 CMOS中最流行的可调电容器拓扑是模拟变容二极管和数字控制开关电容阵列(SCA)。传统的模拟变容二极管在最小电容(C_(min))和最大电容(C_(最大))状态下具有宽调谐范围的高质量因子(Q系数),但它具有差的线性性能差电压相关的非线性电容。在数字控制的SCA的情况下,虽然它显示出非常好的线性度,但其C_(min)状态的Q系数强烈地取决于P阱,深N-WEL和P之间的寄生连接电容的基板损耗-Substing和衬底电阻。特别是,如果SCA在没有深N-NOT的标准数字CMOS过程中实现,则它在较高频率下遭受严重的Q因子劣化在C_(min)状态下。为了克服模拟变容二极管和数字控制的SCA的上述缺点,提出了数字控制的二进制加权累积模式变容阵列(AVA)。与通过连续模拟电压调谐的传统模拟变容二极的对比,所提出的AVA仅使用模拟变量器的C_(MIN)和C_(MAX)的两个状态,通过数字开/关控制。代替零电压参考,负电压(-Vdd)被施加到C_(min)状态下的模拟变容二极管的栅极,以最大化调谐范围,功率处理能力和线性度。通过接通(+ VDD)或OFF(-VDD)所提出的AVA的每个分支而变化。所提出的AVA在所有州内保持高Q系数,即使它在没有深度N阱的标准数字CMOS过程中实现,同时显示与传统SCA相比的相当的线性性能。在仿真中,在所有状态下,2.4 GHz的Q系数大于70,调谐范围约为3.1。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号