首页> 外文会议>Progress in electromagnetics research symposium >A High-Q Linear CMOS Digitally Controlled Accumulation-mode Varactor Array for Multiband RF Circuits
【24h】

A High-Q Linear CMOS Digitally Controlled Accumulation-mode Varactor Array for Multiband RF Circuits

机译:用于多频带RF电路的高Q线性CMOS数控累加模式变容二极管阵列

获取原文

摘要

Electronically tunable capacitors are key elements for tunable and reconfigurable RF circuits. The most popular tunable capacitor topologies in CMOS are the analog varactor and digitally controlled switched capacitor array (SCA). The conventional analog varactor shows a high quality factor (Q-factor) in both the minimum capacitance (C_(min)) and the maximum capacitance (C_(max)) states with a wide tuning range, but it has a poor linearity performance due to the voltage dependent nonlinear capacitance. In case of the digitally controlled SCA, while it shows a very good linearity, its Q-factor in C_(min) state is strongly dependent on the substrate loss by the parasitic junction capacitances between P-well, deep N-well, and P-substrate and the substrate resistance. Especially, if the SCA is implemented in a standard digital CMOS process without deep N-well, it suffers from severe Q-factor degradation in C_(min) state at higher frequencies. In order to overcome the aforementioned drawbacks of the analog varactor and the digitally controlled SCA, the digitally controlled binary-weighted accumulation-mode varactor array (AVA) is proposed. Contrast to the conventional analog varactor tuned by continuous analog voltage, the proposed AVA uses only two states of C_(min) and C_(max) of the analog varactor by digitally on/off control. Instead of a zero voltage reference, the negative voltage (-VDD) is applied to the gate of the analog varactor in C_(min) state in order to maximize the tuning range, power handling capability, and linearity. The total capacitance varies by turning on (+ VDD) or off (-VDD) each branch of the proposed AVA. The proposed AVA keeps a high Q-factor in all states even if it is implemented in a standard digital CMOS process without deep N-well, while showing comparable linearity performance in comparison with the conventional SCA. In simulation, Q-factor at 2.4 GHz is greater than 70 over all states and the tuning range is about 3.1.
机译:电子可调电容器是可调和可重构RF电路的关键元件。 CMOS中最流行的可调电容器拓扑是模拟变容二极管和数控开关电容器阵列(SCA)。常规的模拟变容二极管在最小电容(C_(min))和最大电容(C_(max))状态下均具有较高的品质因数(Q因子),且调谐范围宽,但线性性能却较差取决于电压的非线性电容。对于数字控制的SCA,尽管它显示出非常好的线性,但其C_(min)状态下的Q因子在很大程度上取决于P阱,深N阱和P之间的寄生结电容的衬底损耗。 -衬底和衬底电阻。特别是,如果SCA是在没有深N阱的情况下以标准数字CMOS工艺实现的,则它会在较高频率的C_(min)状态下遭受严重的Q因子劣化。为了克服模拟变容二极管和数字控制SCA的上述缺点,提出了数字控制二进制加权累积模式变容二极管阵列(AVA)。与通过连续模拟电压调谐的常规模拟变容二极管相反,所提出的AVA仅通过数字开/关控制使用模拟变容二极管的C_(min)和C_(max)两种状态。为了使调整范围,功率处理能力和线性度最大化,负电压(-VDD)会以C_(min)状态施加到模拟变容二极管的栅极,而不是零电压参考。总电容通过打开(+ VDD)或关闭(-VDD)建议的AVA的每个分支而变化。所提出的AVA即使在没有深N阱的标准数字CMOS工艺中实现,也能在所有状态下保持较高的Q值,同时与传统SCA相比,具有相当的线性性能。在仿真中,在所有状态下,2.4 GHz下的Q因子均大于70,并且调谐范围约为3.1。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号