首页> 外文会议>ASME InterPack conference;IPACK2009 >MECHANICAL DESIGN OPTIMIZATION OF A PACKAGE ON PACKAGE
【24h】

MECHANICAL DESIGN OPTIMIZATION OF A PACKAGE ON PACKAGE

机译:包装上的包装的机械设计优化

获取原文

摘要

In the past decade, compact components such as Chip Scale Packages and flip chips were the work horses of miniaturization. However, emerging applications are now demanding even higher packaging density. In order to fulfill this requirement, three dimensional packaging was evolved. Advantages of three dimensional packaging structure include minimal conductor length and eliminate speed limiting inter chip interconnects. In order to reduce signal delays and to increase heat dissipation, lot of solutions like through silicon vias, thermal vias, stacking were implemented. Stacked packages are finding applications ranging from high-end servers to mobility products. Most common applications of stacked packages include high performance memory, DRAM, logic-memory stack, system in a package etc. Stacked packages can be package-on-package or die stacked (with several dice inside the same casing) or both. The thermo-mechanical design of package on package is very complex and often requires elaborate models and analysis with considerable CPU time. In this paper we have considered a package with both die stacking and package on package. In the first part of this study we considered a variety of cases resembling the applications that stacked CSP can go into. In this study, we have considered various geometries to optimize the design mechanically in thermo-cycling loading. The optimization function for this study is to minimize the package height without compromising its reliability in terms of thermo-cycles. "Package on package" family of packages is expensive to operate and to fabricate hence a prior simulation of various geometry of interconnects is necessary to understand how the package isgoing to behave in terms of number of cycles. In this study we have considered different thicknesses of die, die attach, top substrate and bottom substrate to optimize solder joint fatigue life. In this study SAC405 is considered.
机译:在过去的十年中,诸如芯片级封装和倒装芯片之类的紧凑组件是微型化的动力。但是,新兴应用现在要求更高的包装密度。为了满足该要求,发展了三维包装。三维封装结构的优点包括最小的导体长度,消除了芯片间互连的速度限制。为了减少信号延迟并增加散热,已实现了许多解决方案,例如通过硅过孔,热过孔,堆叠。堆叠式包装正在寻找从高端服务器到移动产品的各种应用。堆叠式封装的最常见应用包括高性能内存,DRAM,逻辑存储器堆叠,封装中的系统等。堆叠式封装可以堆叠封装或裸片堆叠(在同一外壳内有多个裸片)或两者兼而有之。堆叠式封装的热机械设计非常复杂,并且通常需要精心设计的模型和需要大量CPU时间的分析。在本文中,我们考虑了具有裸片堆叠和堆叠封装的封装。在本研究的第一部分中,我们考虑了多种情况,类似于堆叠式CSP可以进入的应用程序。在这项研究中,我们考虑了各种几何形状以在热循环加载中机械地优化设计。这项研究的优化功能是在不影响热循环可靠性的情况下最小化封装高度。 “封装上的封装”系列封装的操作和制造成本很高,因此,有必要对互连的各种几何形状进行事先仿真,以了解封装的方式。 将根据周期数来表现。在这项研究中,我们考虑了不同厚度的管芯,管芯连接,顶部基板和底部基板,以优化焊点疲劳寿命。在这项研究中,考虑了SAC405。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号