首页> 外文会议>IMECE2008;ASME international mechanical engineering congress and exposition >ADVANCED SIMULATION/MODELING AND RELIABILITY OF FINE PITCH (130um) LEAD-FREE FLIP-CHIP PACKAGE
【24h】

ADVANCED SIMULATION/MODELING AND RELIABILITY OF FINE PITCH (130um) LEAD-FREE FLIP-CHIP PACKAGE

机译:细间距(130um)无铅倒装芯片封装的高级仿真/建模和可靠性

获取原文

摘要

Flip-chip technology has been introduced in recent years which accommodate the ever increasing demands for higher performance and I/O density, while achieving smaller form factor and offering a cost effective solution. As the industry moves toward the 65nm and 45nm technology node, die sizes require a significant reduction while accommodating the need for tighter and finer pitches. For decades, the C4 process has served as the main interconnect method in the flip-chip package. But with bump pitches shrinking, the solder bump based C4 process is facing challenges in terms of reducing pitch and underfill process. At the same time, increasing challenges for flip-chip are seen by the movement toward lead-free solder bumps and low-k dielectric layers.This work conducted simulations and analyses on Tessera developmental μPILR flip chip package incorporating a 130um pitch bump array, using 3-D finite element method (FEM). This study explores the effect of various design parameters on package reliability while providing suggestions for selecting packaging materials. Based on modeling data certain set of over mold, underfill and thermal interface materials enhance overall package reliability performance. Solder fatigue life prediction was performed and solder bump reliability was compared for Tessera flip chip technology and standard flip chip solder joints using Modified Anand solder material properties and Darveaux fatigue life prediction theory. Further more, fracture mechanics approach was applied, and energy release rates were obtained in order to check reliability of low-k dielectric layer, provided passive/low-k material selection. The data presented here provides a baseline for reliability/feasibility of Tessera developmental uPILR flip chip package design for 130um bump pitch. Experimental reliability data is not complete at this time but will be available and published soon.
机译:近年来已经引入了倒装芯片技术,该技术可以满足对更高性能和I / O密度不断增长的需求,同时实现更小的外形尺寸并提供具有成本效益的解决方案。随着行业朝着65nm和45nm技术节点发展,芯片尺寸需要大幅度缩小,同时还要满足更紧密和更精细的间距需求。几十年来,C4工艺一直是倒装芯片封装中的主要互连方法。但是随着凸点间距的缩小,基于焊料凸点的C4工艺在减小间距和底部填充工艺方面面临挑战。同时,随着无铅焊料凸块和低k介电层的发展,倒装芯片面临的挑战越来越大。 这项工作使用3-D有限元方法(FEM)对包含130um间距凸点阵列的Tessera开发型μPILR倒装芯片封装进行了仿真和分析。这项研究探索了各种设计参数对包装可靠性的影响,同时为选择包装材料提供了建议。基于建模数据,某些套模,底部填充和热界面材料可以增强整体封装的可靠性能。进行了焊料疲劳寿命预测,并使用改良的Anand焊料材料特性和Darveaux疲劳寿命预测理论比较了Tessera倒装芯片技术和标准倒装芯片焊点的焊料凸点可靠性。此外,在选择无源/低k材料的情况下,采用了断裂力学方法,并获得了能量释放率,以检查低k介电层的可靠性。此处提供的数据为Tessera开发的uPILR倒装芯片封装的130um凸点间距的可靠性/可行性提供了基线。实验性可靠性数据目前尚不完整,但将很快提供并发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号