首页> 外文会议>Conference on micromachining and microfabrication process technology >Diffusion-induced dislocations in highly boron-doped silicon layers used for bulk micromachining a
【24h】

Diffusion-induced dislocations in highly boron-doped silicon layers used for bulk micromachining a

机译:高扩散硼掺杂硅层中的扩散诱导位错,用于体微加工

获取原文

摘要

Abstract: Boron-doped silicon layers with sufficiently high doping levels become effective stop-layers during the chemical etching of silicon in alkaline type solutions (KOH, NaOH, LiOH) or in EDP (ethylene-diamine-pyrocatechol). An advantageous chemical solution consisting in tetramethyl ammonium hydroxide (TMAH) with isopropyl alcohol (IPA), showing similar etching properties was also proposed. The property as a stop layer of the boron-doped silicon is currently used as the most convenient etch-stop technique, because it is easy to define the thickness of the structure by the depth of boron diffusion in silicon. However, the boron diffusion profile in silicon is not a step-like distribution, but it presents a continuous decrease of the concentration from the silicon surface to the bulk, that depending on the diffusion conditions, i.e. diffusion time, temperature and doping technique. It is therefore expected that such a decrease will result to a continuous variation of the etching rate and a consequently variation of the etching time with the diffusion depth. In this paper we present firstly the doping properties of the silicon layers doped by the termo-chemical method using chemical sources. It is shown that the doping properties vary within the boron-doped layers. Boron diffusion profiles determined by SIMS method and electrical method are presented in order show the specific behavior of the concentration distribution in the silicon bulk. Misfit dislocations are induced by the boron diffusion in silicon at high concentrations. The conditions of the generation of the misfit dislocations in the boron-doped layers depends on the processing conditions, especially on the diffusion time and temperature. We show that the density distribution of the misfit dislocations in the silicon bulk is not uniform after the boron prediffusion and diffusion processes. From the point of view of the micromechanical applications, the inhomogeneity of the structural and doping properties of the silicon layer can influence the stress properties of such silicon-doped layers. Therefore, in order to reduce the stress gradient in the silicon membranes and micromechanical elements, it is necessary to obtain layers with uniform material properties. Both the doping and structural properties of the boron doped layers are to be therefore better knowledged and controlled. However, the doping properties obtained after the boron doping by termo-chemical method or by implantation doping technique cannot provide uniformly doped silicon layers. Therefore, a careful chemical etching during the self-limitation process of the boron-doped silicon layers offers such a possibility, as it will be presented in the paper. In order to eliminate from the silicon doped layers the regions were the properties of the silicon layers are not uniform, it is necessary to control the chemical etching process which is the next important step in the bulk micromachining technology useful to prepare the micromechanical elements. These key parameters of the chemical etching process are the chemical etching rate and the chemical etching time. It is shown that it is possible to calculate the chemical etching rate and the chemical etching time for some specified etching conditions. Such a possibility allows to control the thickness of the micromechanical elements and to eliminate the stress gradient induced by the
机译:摘要:在碱性溶液(KOH,NaOH,LiOH)或EDP(乙二胺-邻苯二酚)中化学硅腐蚀过程中,具有足够高掺杂水平的掺硼硅层成为有效的阻挡层。还提出了一种有利的化学溶液,该溶液由四甲基氢氧化铵(TMAH)和异丙醇(IPA)组成,表现出相似的蚀刻性能。由于易于通过硼在硅中的扩散深度来定义结构的厚度,因此将硼掺杂的硅作为停止层的性质目前被用作最方便的蚀刻停止技术。但是,硼在硅中的扩散分布不是阶梯状分布,而是呈现出从硅表面到块体的浓度连续降低,这取决于扩散条件,即扩散时间,温度和掺杂技术。因此,可以预期,这种降低将导致蚀刻速率的连续变化,并因此导致蚀刻时间随扩散深度的变化。在本文中,我们首先介绍了使用化学源通过热化学方法掺杂的硅层的掺杂特性。结果表明,在硼掺杂层中,掺杂特性有所不同。给出了通过SIMS方法和电学方法确定的硼扩散曲线,以显示硅块中浓度分布的特定行为。硼在硅中的高浓度扩散会引起错配位错。在硼掺杂层中产生失配位错的条件取决于处理条件,特别是取决于扩散时间和温度。我们表明,在硼预扩散和扩散过程之后,硅块中失配位错的密度分布不​​均匀。从微机械应用的角度来看,硅层的结构和掺杂特性的不均匀性会影响这种硅掺杂层的应力特性。因此,为了减小硅膜和微机械元件中的应力梯度,必须获得具有均匀材料性能的层。因此,应该更好地了解和控制硼掺杂层的掺杂和结构特性。然而,在硼掺杂之后通过热化学方法或通过注入掺杂技术获得的掺杂性能不能提供均匀掺杂的硅层。因此,在掺硼硅层的自限制过程中进行仔细的化学刻蚀提供了这种可能性,这将在本文中提出。为了从硅掺杂层中消除硅层的特性不均匀的区域,有必要控制化学蚀刻工艺,这是可用于制备微机械元件的本体微加工技术中的下一个重要步骤。化学蚀刻工艺的这些关键参数是化学蚀刻速率和化学蚀刻时间。结果表明,对于某些特定的蚀刻条件,可以计算出化学蚀刻速率和化学蚀刻时间。这种可能性允许控制微机械元件的厚度,并消除由机械应力引起的应力梯度。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号