【24h】

OTTER Proofs in Tarskian Geometry

机译:Tarskian几何形状的水獭证明

获取原文

摘要

We report on a project to use OTTER to find proofs of the theorems in Tarskian geometry proved in Szmielew's part (Part I) of [9]. These theorems start with fundamental properties of betweenness, and end with the development of geometric definitions of addition and multiplication that permit the representation of models of geometry as planes over Euclidean fields, or over real-closed fields in the case of full continuity. They include the four challenge problems left unsolved by Quaife, who two decades ago found some OTTER proofs in Tarskian geometry (solving challenges issued in [15]). Quaife's four challenge problems were: every line segment has a mid-point; every segment is the base of some isosceles triangle; the outer Pasch axiom (assuming inner Pasch as an axiom); and the first outer connectivity property of betweenness. These are to be proved without any parallel axiom and without even line-circle continuity. These are difficult theorems, the first proofs of which were the heart of Gupta's Ph. D. thesis under Tarski. OTTER proved them all in 2012. Our success, we argue, is due to improvements in techniques of automated deduction, rather than to increases in computer speed and memory. The theory of Hilbert (1899) can be translated into Tarski's language, interpreting lines as pairs of distinct points, and angles as ordered triples of non-collinear points. Under this interpretation, the axioms of Hilbert either occur among, or are easily deduced from, theorems in the first 11 (of 16) chapters of Szmielew. We have found Otter proofs of all of Hilbert's axioms from Tarski's axioms (i.e. through Satz 11.49 of Szmielew, plus Satz 12.11). Narboux and Braun have recently checked these same proofs in Coq.
机译:我们报告了一个项目,以便在[9]的Szmielew的部分(第I)部分中证明的Tarskian几何形状中的定理证明。这些定理开始于之间的基本属性,并以添加和乘法的几何定义的开发,允许几何图形模型作为欧几里德领域的飞行模型,或在完全连续性的情况下通过实际封闭的领域。它们包括Quaife未解决的四个挑战问题,这是二十年前发现的Tarskian几何中的一些水獭证明(解决[15]颁发的解决挑战)。 Quaife的四个挑战问题是:每个线段都有一个中点;每个部分都是一些等腰三角形的基础;外桩公理(假设内部粘液作为公理);以及第一间的外部连接性。这些是在没有任何平行的公理的情况下证明,没有甚至没有线圆连续性。这些是难以理解的定理,它是古普塔的核心的核心。D. Trski下的论文。水獭于2012年证明它们。我们的成功,我们争辩,是由于自动扣除技术的改进,而不是增加计算机速度和记忆。 Hilbert(1899)的理论可以转化为Tarski的语言,将线条解释为与非共线点的有序三元组的不同点对。在这种解释下,希尔伯特的公理在Szmielew的前11个(16)章中的定理中,或者很容易被推导出来。我们已经找到了来自Tarski的公理的所有希尔伯特公理的水獭证明(即通过SZMIELEW的SATZ 11.49,以及SATZ 12.11)。 NARBOUX和BRAUN最近在COQ检查了这些相同的证据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号