首页> 外文会议>Conference on biochemical and molecular engineering >GENETICALLY ENCODED BIOSENSOR FOR ENGINEERING BRANCHED-CHAIN HIGHER ALCOHOL PRODUCTION PATHWAY IN SACCHAROMYCES CEREVISIAE
【24h】

GENETICALLY ENCODED BIOSENSOR FOR ENGINEERING BRANCHED-CHAIN HIGHER ALCOHOL PRODUCTION PATHWAY IN SACCHAROMYCES CEREVISIAE

机译:基因编码的生物传感器,用于酿酒酵母中分支支链的高级醇生产途径

获取原文

摘要

Branched-chain higher alcohols (BCHAs) including isobutanol, isopentanol, and 2-methyl-1-butanol, are promising alternatives to the first-generation biofuel ethanol. These alcohols have better fuel properties than ethanol, such as higher energy density, ease of refining, and better compatibility with existing gasoline engines and infrastructures . We have developed a genetically encoded biosensor to measure the metabolic activity of BCHA biosynthesis in Saccharomyces cerevisiae. This biosensor enables high-throughput screens to identify strains with higher metabolic flux to BCHA synthesis. The versatility of this tool has allowed us to use it in several applications, including in vivo BCHA metabolic pathway engineering/optimization and enzyme engineering. We have been able to screen for isobutanol hyper-producing stains with optimum combinations of genes from the mitochondrial isobutanol pathway (Mito-lbOH-pathway). The ability of this biosensor to monitor the activity of both the mitochondrialand cytosolic isobutanol pathways , has allowed us to engineer several enzymes and regulatory proteins involved in the isobutanol pathways in either compartment, boosting enzymatic activity by as much as 400%. Thus, we have demonstrated the use of this new technology to accelerate the development of strains and enzymes to boost BCHA production in mitochondria and the cytosol. Future applications include combining the biosensor with optogenetic regulation of BCHA biosynthesis for closed-loop dynamic control of this pathway, and using the biosensor to empower systems biology studies for gene discovery, enzyme evolving, and enzyme engineering to boost BCHA production.
机译:包括异丁醇,异戊醇和2-甲基-1-丁醇在内的支链高级醇(BCHA)是第一代生物燃料乙醇的有希望的替代品。这些醇具有比乙醇更好的燃料特性,例如更高的能量密度,易于精炼以及与现有汽油发动机和基础设施的更好兼容性。我们已经开发了一种遗传编码的生物传感器来测量酿酒酵母中BCHA生物合成的代谢活性。这种生物传感器能够进行高通量筛选,从而鉴定出对BCHA合成代谢通量更高的菌株。该工具的多功能性使我们能够在多种应用中使用它,包括体内BCHA代谢途径工程/优化和酶工程。我们已经能够利用线粒体异丁醇途径(Mito-lbOH-途径)的最佳基因组合筛选异丁醇高产染色剂。这种生物传感器监测线粒体胞质异丁醇途径的活性的能力,使我们能够在任一区室中设计参与异丁醇途径的几种酶和调节蛋白,从而将酶活性提高多达400%。因此,我们已经证明了这项新技术的使用,可加速菌株和酶的开发,从而增加线粒体和细胞质中BCHA的产生。未来的应用包括将生物传感器与BCHA生物合成的光遗传学调控相结合,以对该路径进行闭环动态控制,并使用该生物传感器来进行系统生物学研究,以进行基因发现,酶进化和酶工程改造,从而提高BCHA的产量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号