首页> 外文会议>IEEE International Conference on Automation and Computing >Optimization of Echo State Networks by Covariance Matrix Adaption Evolutionary Strategy
【24h】

Optimization of Echo State Networks by Covariance Matrix Adaption Evolutionary Strategy

机译:协方差矩阵自适应进化策略优化回声状态网络

获取原文

摘要

Echo state networks (ESNs) have been shown to be an effective alternative to conventional recurrent neural networks due to its simple training process and good fitting performance of time series modelling tasks. In the primary ESN principle, the random setting of reservoir is considered to be the main advantage of ESN. However, because of the randomly generated connectivity and weight parameters, appropriate setting of the structural parameters which can significantly influence the modelling accuracy is considered a key issue in building ESN models. Evolutionary Strategy (ES) has been shown being a powerful stochastic global optimization method. Moreover, covariance matrix adaption evolutionary strategy (CMA-ES) is an artistically and parallel search method which transforms the searching covariance matrix to guide the best search direction. This paper proposes a CMA-ES-ESN method to optimize several structural parameters of an ESN such as reservoir size, leak rate and spectral radius factor. Finally, the results are compared with those from the original ESN and GA-ESN, ESN optimized by genetic algorithm.
机译:回声状态网络(ESN)由于其简单的训练过程和良好的时序建模任务拟合性能,已被证明是传统递归神经网络的有效替代品。在主要的ESN原理中,油藏的随机设置被认为是ESN的主要优势。但是,由于随机生成的连通性和权重参数,因此可能会严重影响建模精度的结构参数的适当设置被认为是构建ESN模型的关键问题。进化策略(ES)已被证明是一种强大的随机全局优化方法。此外,协方差矩阵适应进化策略(CMA-ES)是一种艺术性的并行搜索方法,它可以转换搜索协方差矩阵以指导最佳搜索方向。本文提出了一种CMA-ES-ESN方法来优化ESN的几个结构参数,例如储层大小,泄漏率和光谱半径因子。最后,将结果与原始ESN和GA-ESN(通过遗传算法优化的ESN)的结果进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号