首页> 外文会议>Iranian Conference on Electrical Engineering >Real space simulation of graphene nanoribbon field-effect transistor with double-lightly doped source and drain regions
【24h】

Real space simulation of graphene nanoribbon field-effect transistor with double-lightly doped source and drain regions

机译:双轻掺杂源极和漏极区的石墨烯纳米带场效应晶体管的真实空间模拟

获取原文

摘要

In this paper, a new structure for a dual-gated graphene nanoribbon field-effect transistor (GNRFET) is proposed, which each part of the source and drain regions are divided into three sections with different doping concentrations. We use highly doped concentration in the first part of both contacts for achieving ohmic structure. For obtaining the high current ratio and consequently high efficiency, the number and doping concentrations of lightly doped regions are optimized. In order to simulate the device characteristics, the self-consistent solution of Poisson and Schrödinger equations based on the non-equilibrium Green's Function (NEGF) formalism is used in the ballistic regime. To write the Hamiltonian matrix, we use the tight-binding approximation method in the real space, which has high precision. The obtained simulation results show that, the band-to-band tunneling (BTBT) and ambipolar behavior in the proposed double-lightly doped GNRFET (DLD-GNRFET) are significantly reduced and consequently, the OFF current and delay time are decreased, which are significantly observed in the conventional GNRFETs (C-GNRFETs). Furthermore, the proposed structure has larger ON/OFF ratio, lower subthreshold swing and smaller drain induced barrier lowering (DIBL), in comparison with the C-GNRFETs.
机译:本文提出了一种双栅极石墨烯纳米带场效应晶体管(GNRFET)的新结构,该结构将源极和漏极区域的每一部分分为三个部分,每个部分具有不同的掺杂浓度。我们在两个触点的第一部分使用高掺杂浓度来实现欧姆结构。为了获得高电流比并因此获得高效率,对轻掺杂区的数量和掺杂浓度进行了优化。为了模拟设备特性,在弹道系统中使用了基于非平衡格林函数(NEGF)形式主义的Poisson和Schrödinger方程的自洽解。为了写哈密顿矩阵,我们在实际空间中使用了紧绑定逼近方法,它具有很高的精度。所得仿真结果表明,所提出的双轻掺杂GNRFET(DLD-GNRFET)中的带间隧穿(BTBT)和双极性行为显着降低,从而降低了截止电流和延迟时间,这是在传统的GNRFET(C-GNRFET)中得到了明显的观察。此外,与C-GNRFET相比,提出的结构具有更大的开/关比,更低的亚阈值摆幅和更小的漏极感应势垒降低(DIBL)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号