...
首页> 外文期刊>Journal of Applied Physics >Ballistic graphene nanoribbon metal-oxide-semiconductor field-effect transistors: A full real-space quantum transport simulation
【24h】

Ballistic graphene nanoribbon metal-oxide-semiconductor field-effect transistors: A full real-space quantum transport simulation

机译:弹道石墨烯纳米带金属氧化物半导体场效应晶体管:完整的实空间量子传输模拟

获取原文
获取原文并翻译 | 示例
           

摘要

A real-space quantum transport simulator for graphene nanoribbon (GNR) metal-oxide-semiconductor field-effect transistors (MOSFETs) has been developed and used to examine the ballistic performance of GNR MOSFETs. This study focuses on the impact of quantum effects on these devices and on the effect of different type of contacts. We found that two-dimensional (2D) semi-infinite graphene contacts produce metal-induced-gap states (MIGS) in the GNR channel. These states enhance quantum tunneling, particularly in short channel devices, they cause Fermi level pinning and degrade the device performance in both the ON-state and OFF-state. Devices with infinitely long contacts having the same width as the channel do not indicate MIGS. Even without MIGS quantum tunneling effects such as band-to-band tunneling still play an important role in the device characteristics and dominate the OFF-state current. This is accurately captured in our nonequilibrium Greens' function quantum simulations. We show that both narrow (1.4 nm width) and wider (1.8 nm width) GNRs with 12.5 nm channel length have the potential to outperform ultrascaled Si devices in terms of drive current capabilities and electrostatic control. Although their subthreshold swings under forward bias are better than in Si transistors, tunneling currents are important and prevent the achievement of the theoretical limit of 60 mV/dec.
机译:开发了一种用于石墨烯纳米带(GNR)金属氧化物半导体场效应晶体管(MOSFET)的真实空间量子传输模拟器,并将其用于检查GNR MOSFET的弹道性能。这项研究的重点是量子效应对这些器件的影响以及不同类型的触点的影响。我们发现二维(2D)半无限石墨烯接触在GNR通道中产生金属诱导的间隙态(MIGS)。这些状态增强了量子隧穿,特别是在短通道器件中,它们导致费米能级锁定,并且在导通状态和截止状态下均会降低器件性能。具有与通道相同宽度的无限长触点的设备不会显示MIGS。即使没有MIGS,量子隧穿效应(如带间隧穿)仍在器件特性中起着重要作用,并支配着关态电流。在我们的非平衡格林函数量子模拟中可以准确地捕获到这一点。我们显示,在驱动电流能力和静电控制方面,具有12.5 nm沟道长度的窄(1.4 nm宽度)和较宽(1.8 nm宽度)的GNR都有可能胜过超大规模Si器件。尽管它们在正向偏置下的亚阈值摆幅要比Si晶体管好,但隧穿电流很重要,并且妨碍了60 mV / dec的理论极限的实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号