首页> 外文会议>IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems >ALN thin-films as heat spreaders in III–V photonics devices Part 2: Simulations
【24h】

ALN thin-films as heat spreaders in III–V photonics devices Part 2: Simulations

机译:ALN薄膜作为III-V光子装置的散热器部分第2部分:模拟

获取原文

摘要

In the paper, we aim to solve the thermal problems appearing in integrated silicon photonics by using high thermal conductivity Aluminium Nitride (ALN) as a thermal spreading layer located around the ridge of a hybrid III-V laser on silicon in comparison to the existing encapsulation material benzocyclobutene (BCB). Here, to facilitate the design of reliable hybrid semiconductor lasers, we first develop and implement a multiphysics electro-thermo-mechanical model within a finite element environment COMSOL. A phenomenological model of laser operation is used to numerically capture all the thermal and electrical characteristics of the lasers. In terms of the hybrid devices, the simulated thermal resistance agrees well with our device measurements presented in Part 1 of this work. We also demonstrate that the use of the ALN heat spreader can significantly reduce the thermal resistance. Moreover, a linear elastic model is employed for a mechanical analysis of the entire laser structure. The maximum allowable stress is estimated using the Christensen criterion. We find that the process-dependent residual stress dictates the device stress field. In the current design, the BCB encapsulation layer is at risk of failure around the InP waveguide. For AlN spreaders, lower film processing temperatures are key to reduce the stress in the deposited film. We further perform a parametric study on Tref to determine the maximum allowable deposition temperature of AlN/BCB. The simulations suggest that Tref should not exceed 59 °C and 69 °C for ALN and BCB respectively to avoid mechanical failure in the devices.
机译:在本文中,我们的目的通过使用高导热型氮化铝(ALN)作为位于硅的混合III-V激光激光器的脊周围的热扩散层,与现有的封装相比,通过使用高导热氧化铝氮化物(ALN)来解决集成的硅光子学中出现的热问题。材料苯并环丁烯(BCB)。这里,为了便于设计可靠的混合半导体激光器,我们首先在有限元环境COMSOL中开发和实现多麦型电热机械模型。激光操作的现象学模型用于数值捕获激光器的所有热和电气特性。就混合装置而言,模拟的热阻与在本工作的第1部分中的设备测量中吻合良好。我们还证明使用ALN散热器可以显着降低热阻。此外,采用线性弹性模型用于整个激光结构的机械分析。使用Christensen标准估计最大允许应力。我们发现过程相关的残余应力决定了器件应力场。在当前设计中,BCB封装层面临INP波导周围失效的风险。对于ALN吊具,较低薄膜处理温度是降低沉积膜中应力的关键。我们进一步对TREF进行参数研究以确定ALN / BCB的最大允许沉积温度。模拟表明,TREF分别不应超过59°C和69°C,分别超过59°C和69°C,以避免器件中的机械故障。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号