首页> 外文会议>IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems >Design, Simulation and Fabrication of Liquid Cooled LTCC Devices Utilizing Integrated Channels
【24h】

Design, Simulation and Fabrication of Liquid Cooled LTCC Devices Utilizing Integrated Channels

机译:利用集成通道的液冷LTCC器件的设计,仿真和制造

获取原文

摘要

Beside the possibilities low temperature co-fired ceramic (LTCC) offers for electronic packaging it also enables the fabrication of micro fluidic elements like channels and embedded cavities. Hence, LTCC facilitate the realization of complex and integrated micro fluidic systems. However, for many power applications it is necessary to have a short thermal path between the power semiconductor and the heat sink. The poor thermal conductivity of LTCC necessitates an opening in the ceramic, to bond the chip directly to the heat sink. The focus of the presented paper lies on the heat dissipation by liquid cooling. For this purpose two cooling methods utilizing liquid cooling are investigated. In method 1 a power chip is placed on a LTCC substrate with an integrated fluidic channel. A coolant is pumped through the channel in order to cool down the device. Thermal vias are added in the ceramic and the fluidic channel to optimize the heat transfer to the coolant. In method 2 the power chip is placed directly in the channel and coolant is pumped through an opening over the chip in order to realize jet impingement cooling. The designs are simulated using ANSYS CFX to estimate the thermal resistance of the devices and to evaluate the influence coolant flow rate. The designs are fabricated using the DuPont 951 tape system in combination with high purity carbon tape to form the fluidic channels inside the LTCC and silver metallization. The jet impingement cooling design is fabricated in two separate LTCC modules, one containing a flip chip mounted thermal test chip (TTC) and one containing the fluidic elements. The two modules are bonded using an aluminum filled epoxy. The TTC is used to evaluate the thermal resistances, which are 3.1 K/W and 1.1 K/W for method 1 and method 2, respectively. Advantages of the presented cooling methods are the low thermal resistance and the good embedding capability in the co-fire LTCC process.
机译:除了可能性低温共用陶瓷(LTCC)提供电子包装的供应还可以制造像通道和嵌入式空腔的微流体元素。因此,LTCC有助于实现复杂和集成的微流体系统。然而,对于许多电力应用,必须在功率半导体和散热器之间具有短的热路径。 LTCC的差导热率差需要陶瓷中的开口,以将芯片直接粘合到散热器上。所提出的纸张的焦点在于液体冷却的散热。为此目的,研究了利用液体冷却的两种冷却方法。在方法1中,将电力芯片放置在具有集成流体通道的LTCC衬底上。冷却剂被泵送通过通道,以便冷却装置。热通孔在陶瓷和流体通道中加入,以优化对冷却剂的热传递。在方法2中,电源芯片直接放置在通道中,冷却剂通过芯片上的开口泵送,以实现喷射冲击冷却。使用ANSYS CFX模拟设计以估计器件的热阻并评估影响冷却剂流速。设计使用DuPont 951胶带系统与高纯碳胶带组合制造,以在LTCC和银金属中形成流体通道。喷射冲击冷却设计在两个单独的LTCC模块中制造,一个包含倒装芯片安装的热试验芯片(TTC),一个包含流体元件。使用填充的环氧树脂粘合两个模块。 TTC分别用于评估方法1和方法2的3.1k / w和1.1k / w的热阻。所提出的冷却方法的优点是耐热电阻和共火LTCC工艺中的良好嵌入能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号