首页> 外文会议>IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems >Design, simulation and fabrication of liquid cooled LTCC devices utilizing integrated channels
【24h】

Design, simulation and fabrication of liquid cooled LTCC devices utilizing integrated channels

机译:利用集成通道的液冷LTCC器件的设计,仿真和制造

获取原文

摘要

Beside the possibilities low temperature co-fired ceramic (LTCC) offers for electronic packaging it also enables the fabrication of micro fluidic elements like channels and embedded cavities. Hence, LTCC facilitate the realization of complex and integrated micro fluidic systems. However, for many power applications it is necessary to have a short thermal path between the power semiconductor and the heat sink. The poor thermal conductivity of LTCC necessitates an opening in the ceramic, to bond the chip directly to the heat sink. The focus of the presented paper lies on the heat dissipation by liquid cooling. For this purpose two cooling methods utilizing liquid cooling are investigated. In method 1 a power chip is placed on a LTCC substrate with an integrated fluidic channel. A coolant is pumped through the channel in order to cool down the device. Thermal vias are added in the ceramic and the fluidic channel to optimize the heat transfer to the coolant. In method 2 the power chip is placed directly in the channel and coolant is pumped through an opening over the chip in order to realize jet impingement cooling. The designs are simulated using ANSYS CFX to estimate the thermal resistance of the devices and to evaluate the influence coolant flow rate. The designs are fabricated using the DuPont 951 tape system in combination with high purity carbon tape to form the fluidic channels inside the LTCC and silver metallization. The jet impingement cooling design is fabricated in two separate LTCC modules, one containing a flip chip mounted thermal test chip (TTC) and one containing the fluidic elements. The two modules are bonded using an aluminum filled epoxy. The TTC is used to evaluate the thermal resistances, which are 3.1 K/W and 1.1 K/W for method 1 and method 2, respectively. Advantages of the presented cooling methods are the low thermal resistance and the good embedding capability in the co-fire LTCC process.
机译:除了低温共烧陶瓷(LTCC)用于电子封装的可能性外,它还能够制造微流体元件,例如通道和嵌入式腔体。因此,LTCC有助于实现复杂的集成微流体系统。但是,对于许多功率应用而言,在功率半导体和散热器之间必须具有较短的热路径。 LTCC导热性差,因此需要在陶瓷上开孔,以将芯片直接粘合到散热器。本文的重点在于液体冷却的散热。为此,研究了两种利用液体冷却的冷却方法。在方法1中,将功率芯片放置在具有集成流体通道的LTCC基板上。冷却剂被泵送通过通道,以冷却设备。在陶瓷和流体通道中添加了热过孔,以优化向冷却剂的热传递。在方法2中,功率芯片直接放置在通道中,冷却剂通过芯片上的开口泵出,以实现射流冲击冷却。使用ANSYS CFX对设计进行仿真,以估算设备的热阻并评估影响冷却液流量的能力。设计是使用杜邦951胶带系统与高纯度碳胶带组合制成的,以在LTCC和银金属内部形成流体通道。射流冲击冷却设计是在两个单独的LTCC模块中制造的,一个模块包含安装在倒装芯片上的热测试芯片(TTC),另一个模块包含流体元件。两个模块使用铝填充环氧树脂粘合。 TTC用于评估热阻,方法1和方法2的热阻分别为3.1 K / W和1.1 K / W。提出的冷却方法的优点是在共烧LTCC工艺中具有较低的热阻和良好的嵌入能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号