首页> 外文会议>International Microsystems, Packaging, Assembly and Circuits Technology Conference >Growth of Cu6Sn5 and Cu3Sn intermetallic compounds on (111)-, (100)-, and randomly-oriented copper films
【24h】

Growth of Cu6Sn5 and Cu3Sn intermetallic compounds on (111)-, (100)-, and randomly-oriented copper films

机译:Cu6Sn5和Cu3Sn金属间化合物在(111)-,(100)-和随机取向的铜膜上的生长

获取原文

摘要

Sn whisker has been found since 1940s.[1] The formation mechanism of whiskers was controversial. There were two possible mechanisms. Some scientists thought whisker formation were the result of recrystallization or abnormal grain growth, however others suggested that the atomic migration of Cu caused by compressive stress gradient were the main driving force of whisker formation. In latest study, Han-wen Lin et al. found that the whiskers growth mechanism is highly related with the growth of intermetallic compounds. The results showed that (100)- or (111)-oriented copper can slow down the growth of intermetallic compounds (IMCs) and whiskers growth. This can prove that the driving force of whiskers is compressive stress gradient produced by serious IMCs formation. As mentioned above, the growth of IMCs plays an important role in whisker formation, and copper are widely used as under bump metallization (UBM) so now we are interesting in the research of the growth mechanism of Cu6Sn5 and Cu3Sn IMCs. Our lab can fabricate highly (111)-oriented nano-twinned copper film and after annealing at appropriate temperature we can get (100)-oriented copper with large grain size. These copper films will serve as substrate. After certain duration of aging test, the results showed that the IMCs of copper and tin grew relatively fast along tin grain boundary. Also, we found that the growth of Cu6Sn5 and Cu3Sn was inhibited on (100)- and (111)-oriented copper films, and the grain of IMCs grew large in randomly-oriented copper film. So we suggest grain boundary diffusion of tin dominate IMCs formation in Cu/Sn system. Moreover, the IMC growth rate on (100)-oriented copper films are even slower than (111 )-oriented copper films.
机译:自1940年代以来就发现了锡晶须。[1]晶须的形成机理是有争议的。有两种可能的机制。一些科学家认为晶须形成是再结晶或晶粒异常生长的结果,但另一些科学家则认为,由压应力梯度引起的铜原子迁移是晶须形成的主要驱动力。在最新研究中,林汉文等。发现晶须的生长机理与金属间化合物的生长高度相关。结果表明,(100)或(111)取向的铜可以减缓金属间化合物(IMC)的生长和晶须的生长。这可以证明晶须的驱动力是由严重的IMC形成所产生的压应力梯度。如上所述,IMC的生长在晶须形成中起着重要作用,并且铜被广泛用作凸点下金属化(UBM),因此,我们现在对Cu6Sn5和Cu3Sn IMC的生长机理的研究很感兴趣。我们的实验室可以制造高度(111)取向的纳米孪晶铜膜,在适当的温度下退火后,我们可以得到大晶粒尺寸的(100)取向的铜。这些铜膜将用作基材。经过一定的时效测试,结果表明,铜和锡的IMC沿锡晶界生长相对较快。此外,我们发现在(100)和(111)取向的铜膜上,Cu6Sn5和Cu3Sn的生长受到抑制,在无规取向的铜膜中,IMC的晶粒长大。因此,我们建议在Cu / Sn系统中锡的晶界扩散主导IMC的形成。而且,在(100)取向的铜膜上的IMC生长速率甚至比(111)取向的铜膜还要慢。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号