首页> 外文会议>International Conference on Intelligent Systems Design and Applications >Malicious Webpage Detection by Semantics-Aware Reasoning
【24h】

Malicious Webpage Detection by Semantics-Aware Reasoning

机译:通过语义感知推理的恶意网页检测

获取原文

摘要

The recent evolutional development of dynamic HTML techniques empowers attackers a new and powerful tool to compromise machines. A malicious DHTML code disguises itself as a normal webpage. The malicious webpage infects the victim when a user browses it. Furthermore, such DHTML code can disguise easily through obfuscation or transformation, which makes detection even harder. Anti-virus software packages commonly use signature-based approaches which might not be able to efficiently identify camouflage malicious HTML code. In this paper, we propose a novel semantics-aware reasoning detection algorithm (SeAR) using the techniques of semantic modeling and memory-based reasoning for malicious webpage detection. SeAR is resilient to code obfuscations and is able to detect malicious webpage correctly. The experiments demonstrate that our detection algorithm can effectively detect variants of malicious HTML code with a low false rate.
机译:最近动态HTML技术的进化发展使攻击者成为一个新的和强大的工具来泄露机器。恶意DHTML代码将自己伪装为正常的网页。恶意网页当用户浏览时感染受害者。此外,这种DHTML代码可以通过混淆或转换容易地伪装,这使得甚至更难地检测。防病毒软件包通常使用基于签名的方法,这可能无法有效地识别伪装恶意HTML代码。在本文中,我们提出了一种新颖的语义知识推理检测算法(SEAR),使用语义建模和基于内存的推理来进行恶意网页检测。 Sear是对代码混淆的弹性,并且能够正确地检测恶意网页。实验表明,我们的检测算法可以有效地检测具有低假速率的恶意HTML代码的变体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号