首页> 外文期刊>Concurrency and computation: practice and experience >MMWD:An efficient mobile malicious webpage detection framework based on deep learning and edge cloud
【24h】

MMWD:An efficient mobile malicious webpage detection framework based on deep learning and edge cloud

机译:MMWD:基于深度学习和边缘云的高效移动恶意网页检测框架

获取原文
获取原文并翻译 | 示例

摘要

In recent years, with the rapid development of mobile social networks and services, the research of mobile malicious webpage detection has become a hot topic. Most of the existing malicious webpage detection systems are deployed on desktop systems and servers. Due to the limitation of network transmission delay and computing resources, these existing solutions fail to provide the real-time and lightweight properties for mobile webpage detection. In this paper, we propose an advanced mobile malicious webpage detection framework based on deep learning and edge cloud. Inspired by the idea of edge computing, a multidevice load optimization approach is first introduced to improve detection efficiency. Second, an automatic extraction approach based on deep learning model features is presented to enhance detection accuracy. Furthermore, detection systems can be flexibly deployed on edge nodes and servers, thus providing the properties of resource optimization deployment and real-time detection. Finally, comparative analysis and performance evaluation are presented to show the detection efficiency and accuracy of the proposed framework.
机译:近年来,随着移动社交网络和服务的快速发展,移动恶意网页检测的研究已成为一个热门话题。大多数现有的恶意网页检测系统部署在桌面系统和服务器上。由于网络传输延迟和计算资源的限制,这些现有解决方案无法为移动网页检测提供实时和轻量级的属性。在本文中,我们提出了一种基于深度学习和边缘云的高级移动恶意网页检测框架。灵感来自边缘计算的想法,首先引入多方面负载优化方法以提高检测效率。其次,提出了一种基于深度学习模型特征的自动提取方法来提高检测精度。此外,可以灵活地部署在边缘节点和服务器上的检测系统,从而提供资源优化部署和实时检测的属性。最后,提出了比较分析和性能评估,以显示提出框架的检测效率和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号