首页> 外文会议>International Conference on Computational Intelligence and Security >A Further Discussion on Convergence Rate of Immune Genetic Algorithm to Absorbed-State
【24h】

A Further Discussion on Convergence Rate of Immune Genetic Algorithm to Absorbed-State

机译:进一步探讨免疫遗传算法收敛率到吸收状态的进一步探讨

获取原文
获取外文期刊封面目录资料

摘要

A new Immune Genetic Algorithm (IGA) modeling was completed using Markov chain. The convergence rate of IGA to absorbed-state was deduced using norm and the analysis of transition probability matrix. According to the design and the performance of IGA, the detailed quantitative expressions of convergence rate to absorbed-state which include immune parameters in IGA was presented. Then the discussion was carried out about the effect of the parameters on the convergence rate. It was found that several parameters such as the population size, the population distribution, the string length etc. would all affect the optimization. The conclusions demonstrate that why IGA can maintain the diversity very well so that the optimization is very quick. This paper can also be helpful for the further study on the convergence rate of Immune Genetic Algorithm.
机译:使用马尔可夫链完成了一种新的免疫遗传算法(IgA)建模。使用常规和转换概率矩阵的分析推导了IgA对吸收状态的收敛速率。根据IgA的设计和性能,提出了包括IgA中包括免疫参数的收敛速率的详细定量表达。然后,讨论是关于参数对收敛速度的影响。结果发现,诸如人口大小,人口分布,字符串长度等的几个参数都会影响优化。结论表明,为什么IGA可以非常好地保持多样性,以便优化非常快。本文还可以有助于进一步研究免疫遗传算法的收敛速率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

开通会员

免费获取本篇文献

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号