首页> 外文会议>International Microsystems, Packaging, Assembly and Circuits Technology Conference >In-situ observation of electromigration induced failure modes and intermetallic compound growth mechanisms for Chip Scale Packages with different structures
【24h】

In-situ observation of electromigration induced failure modes and intermetallic compound growth mechanisms for Chip Scale Packages with different structures

机译:原位观察电迁移诱导的芯片鳞片封装具有不同结构的芯片鳞片封装的失效模式和金属间化合物生长机制

获取原文

摘要

In this study we observed the electromigration-induced (EM-induced) failure and intermetallic compound (IMC) growth mechanism in-situ with four structures: (1) 8.6 μm Cu UBM on 4 μm Cu RDL (2) 9 μm Cu RDL without UBM (3) 3 μm Cu/ 2 μm Ni UBM on 4 μm Cu RDL (4) 7 μm Cu/ 2 μm Ni RDL without UBM The Chip Scale Packages (CSPs) were mounted with printed circuit boards (PCB) then tested in EM testing system and monitored the resistances with 0.7 A at 160°C. Two kinds of typical failure modes were observed for the samples without UBM after current stressing. One is the Cu trace dissolution and the other is the voids formation at IMC and SnAgCu solder ball (SAC) interface due to unbalance atomic fluxes. Some UBM consumed for the samples with UBM after current stressing and there were no any failures even after 3000 h current stressing. The current were spread by UBM and reduced 54%~73% current crowding effect as the simulation results. The CuSn and CuSn IMCs growth mechanism is quite different when Ni atoms participate in the interfacial reaction. The lower chemical potential (Cu,Ni)Sn IMC formed and induced more Cu atoms diffused from CuSn into (Cu,Ni)Sn IMC then retarded the growth rate of CuSn IMC. The current spreading simulation, detailed mechanisms of two failure modes and CuSn/CuSn IMCs growth mechanisms were investigated in this study.
机译:在这项研究中,我们观察到诱导的电迁移诱导的(EM-诱导的)失效和金属间化合物(IMC)生长机制原位用四个结构:(1)8.6μMCUBMON4μMCu RD1(2)9μmCuRDL而没有UBM(3)3μmCu/2μmNIUBM ON4μmCU RDL(4)7μmCU/2μmNIRDL而没有UBM芯片刻度封装(CSP)安装有印刷电路板(PCB),然后在EM中进行测试测试系统并在160°C下监控0.7A的电阻。在电流应激后,对于没有UBM的样品,观察到两种典型的损失模式。一种是Cu痕量溶解,另一个是由于不平衡原子通量的IMC和SnAGCU焊球(SAC)界面处的空隙形成。在电流应力后用UBM的样品消耗的一些UBM,即使在3000小时的压力后也没有任何故障。随着仿真结果,电流通过UBM传播,降低了电流拥挤效应的54%〜73%。当Ni原子参与界面反应时,CUSN和CUSN IMCS生长机制非常不同。形成的较低的化学电位(Cu,Ni)Sn IMC和诱导从Cusn扩散到(Cu,Ni)Sn IMC中的更多Cu原子延迟了Cusn IMC的生长速率。本研究研究了目前的展开模拟,两种故障模式和CUSN / CUSN IMCS生长机制的详细机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号