首页> 外文会议>International symposium on neural networks;ISNN 2009 >Dynamic Structure-Based Neural Networks Determination Approach Based on the Orthogonal Genetic Algorithm with Quantization
【24h】

Dynamic Structure-Based Neural Networks Determination Approach Based on the Orthogonal Genetic Algorithm with Quantization

机译:基于正交遗传算法量化的基于动态结构的神经网络确定方法

获取原文
获取外文期刊封面目录资料

摘要

Simulation optimization studies the problem of optimizing simulation-based objectives. This field has a strong history in engineering but often suffers from several difficulties including being time-consuming and NP-hardness. Simulation optimization is a new and hot topic in the field of system simulation and operational research. This paper presents a hybrid approach that combines Evolutionary Algorithms with Neural Networks for solving simulation optimization problems. In our research, Neural Networks are applied to replace the known simulation model for evaluating subsequent iterative solutions. Further, we apply the dynamic structure-based neural networks to learn and replace the known simulation model. The determination of dynamic structure-based neural networks is the kernel of this paper. The experimental results demonstrated that our approach can find optimal or close-to-optimal solutions, and is superior to other recent algorithms in simulation optimization.
机译:仿真优化研究优化基于仿真的目标的问题。该领域在工程领域具有悠久的历史,但经常遇到一些困难,包括耗时和NP硬度。仿真优化是系统仿真和运筹学领域中的一个新的热点话题。本文提出了一种混合方法,将进化算法与神经网络相结合来解决仿真优化问题。在我们的研究中,神经网络被用来替代已知的仿真模型来评估后续的迭代解决方案。此外,我们应用基于动态结构的神经网络来学习和替换已知的仿真模型。基于动态结构的神经网络的确定是本文的核心。实验结果表明,我们的方法可以找到最优解或接近最优解,并且在仿真优化方面优于其他最新算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号