首页> 外文会议>Industrial Electronics, 2009. IECON '09 >SiC power semiconductors in HEVs: Influence of junction temperature on power density, chip utilization and efficiency
【24h】

SiC power semiconductors in HEVs: Influence of junction temperature on power density, chip utilization and efficiency

机译:混合动力汽车中的SiC功率半导体:结温对功率密度,芯片利用率和效率的影响

获取原文

摘要

With SiC, junction temperatures of power semiconductors of more than 700?C are theoretically possible due to the low intrinsic charge carrier concentration of SiC. Hence, a lot of research on package configurations for power semiconductor operation above 175?C is currently carried out, especially within the automotive industry due to the possible high ambient temperatures occurring in hybrid electric vehicles (HEVs). This paper shows, that a higher junction temperature though does not necessarily guarantee a higher utilization of the SiC chips with respect to the current that the device can conduct without overheating. The reason is, that for most power devices the power losses start to increase very rapidly at high junction temperatures while the power that can be dissipated always increases linearly with the junction temperature. The junction temperature, where the device current starts to decrease at, is derived for different SiC chips using measured onstate conduction and switching losses in this paper. This paper furthermore analyzes in detail, how the junction temperature on the one hand is influenced by boundary conditions and on the other hand influences itself the core parameters of a converter such as efficiency, the required chip area (i. e. cost) as well as the volumetric power density and thus forms an additional degree of freedom in the design of a power electronic converter. While calculating the optimum junction temperature and analyzing its impact on the system performance, it is demonstrated, how these results can help to find the best suited power semiconductor device for the particular application. The performance of the calculations is shown on a design applied to a drive inverter for hybrid electric vehicles with normally-off SiC JFETs. Operated close to the optimum junction temperature of the SiC JFETs, it reaches a power density of 51 kW/l for the power modules and the air-cooling system, which is shown to be doubled by increasing chip size a-nd using an advanced power semiconductor package with a lower thermal resistance from junction to ambient than the for this case assumed 1 K/W.
机译:使用SiC时,由于SiC的固有电荷载流子浓度低,理论上功率半导体的结温可能超过700?C。因此,由于混合动力汽车(HEV)可能会出现较高的环境温度,因此目前正在对175°C以上的功率半导体工作的封装结构进行大量研究,尤其是在汽车行业。本文表明,较高的结温虽然不一定能保证SiC芯片相对于器件可以传导而不产生过热的电流具有更高的利用率。原因是,对于大多数功率器件而言,功率损耗在高结温时开始非常迅速地增加,而可耗散的功率始终随结温线性增加。本文使用测量的导通状态和开关损耗,针对不同的SiC芯片得出了器件电流开始降低时的结温。本文进一步详细分析,结温一方面受边界条件的影响,另一方面又自身影响转换器的核心参数,例如效率,所需的芯片面积(即成本)以及体积功率密度,从而在功率电子转换器的设计中形成了额外的自由度。在计算最佳结温并分析其对系统性能的影响时,将展示这些结果如何帮助您找到最适合特定应用的功率半导体器件。计算的性能显示在应用于具有常关SiC JFET的混合动力汽车的驱动逆变器的设计中。在接近SiC JFET的最佳结温的条件下运行,功率模块和空冷系统的功率密度达到51 kW / l,通过增加芯片尺寸,功率密度可以提高一倍。 nd所使用的高级功率半导体封装的结点到环境的热阻要比本例中假定的1 K / W低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号