首页> 外文会议>International workshop on structural health monitoring >An Expectation-maximization Algorithm-based Framework for Vehicle-vibration-based Indirect Structural Health Monitoring of Bridges
【24h】

An Expectation-maximization Algorithm-based Framework for Vehicle-vibration-based Indirect Structural Health Monitoring of Bridges

机译:一种基于桥梁的车辆振动间接结构健康监测的期望 - 最大化算法。

获取原文
获取外文期刊封面目录资料

摘要

We propose a vehicle-vibration-based indirect structural health monitoring (SHM) framework that uses acceleration signals collected from within a moving vehicle to identify global modal and structural parameters of a full-scale and in-service bridge. Motivated by many benefits of indirect sensing methods, such as low-cost, low-maintenance and no interruption to traffic, researchers have in the past presented different algorithms and evaluated them on several simulation and lab-scale datasets. However, the uncertainties of the real-world vehicle-bridge interaction system and limited training data may cause previous methods to fail on full-scale bridges. To address these uncertainties, we 1) cast the vehicle-bridge interaction system as a linear time-varying Gaussian state-space model, which is not only able to estimate unobserved bridge responses but also able to add a stochastic process for modeling uncertainties, and 2) propose a hybrid algorithm that uses non-linear least squares and the expectation-maximization algorithm to estimate modal and structural parameters of the bridge using partially observed data (only the vehicle's dynamic response is observed). We conducted field experiments on a steel truss bridge carrying two rail lines across the Monongahela River in Pittsburgh, Pennsylvania. For estimating the damage that is simulated by placing stationary trains on the bridge, our proposed approach has a 36.3% error reduction compared to a fully data-driven method. The results show that our proposed algorithm provides a potentially practical approach for continuous monitoring of in-service bridges.
机译:我们提出了一种基于车辆振动的间接结构健康监测(SHM)框架,其使用从移动车​​辆内收集的加速信号来识别全尺度和服务桥的全局模态和结构参数。受到间接传感方法的许多好处的推动,例如低成本,低维护,没有流量中断,研究人员在过去呈现了不同的算法,并在几个模拟和实验室规模数据集上进行了评估。然而,现实世界车辆 - 桥梁交互系统和有限培训数据的不确定性可能导致以前的方法在全尺寸桥梁上失效。为了解决这些不确定性,我们1)将车桥交互系统铸造为线性时变高斯状态空间模型,这不仅能够估计未观察到的桥梁响应,而且能够增加用于建模不确定性的随机过程,以及2)提出一种混合算法,其使用非线性最小二乘和期望最大化算法来使用部分观察到的数据(仅观察到车辆的动态响应)来估计桥的模态和结构参数。我们在宾夕法尼亚州匹兹堡匹兹堡的钢铁河河上携带两条铁路线的钢桁架桥进行了现场实验。为了估算通过将静止列车放置在桥上模拟的损坏,我们所提出的方法与完全数据驱动的方法相比具有36.3%的误差减少。结果表明,我们所提出的算法提供了一种潜在的实用方法,用于连续监控在线式桥梁。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号