首页> 外文会议>Medical Image Computing and Computer-Assisted Intervention - MICCAI 2006 pt.1; Lecture Notes in Computer Science; 4190 >An Approach for the Automatic Cephalometric Landmark Detection Using Mathematical Morphology and Active Appearance Models
【24h】

An Approach for the Automatic Cephalometric Landmark Detection Using Mathematical Morphology and Active Appearance Models

机译:基于数学形态学和主动外观模型的自动头颅地标检测方法

获取原文
获取原文并翻译 | 示例

摘要

Cephalometric analysis of lateral radiographs of the head is an important diagnosis tool in orthodontics. Based on manually locating specific landmarks, it is a tedious, time-consuming and error prone task. In this paper, we propose an automated system based on the use of Active Appearance Models (AAMs). Special attention has been paid to clinical validation of our method since previous work in this field used few images, was tested in the training set and/or did not take into account the variability of the images. In this research, a top-hat transformation was used to correct the intensity inhomogeneity of the radiographs generating a consistent training set that overcomes the above described drawbacks. The AAM was trained using 96 hand-annotated images and tested with a leave-one-out scheme obtaining an average accuracy of 2.48mm. Results show that AAM combined with mathematical morphology is the suitable method for clinical cephalometric applications.
机译:头颅侧位片的头颅测量分析是正畸中的重要诊断工具。在手动定位特定地标的基础上,这是一项繁琐,耗时且容易出错的任务。在本文中,我们提出了一种基于主动外观模型(AAM)的自动化系统。由于我们在该领域的先前工作使用的图像很少,在训练集中进行过测试和/或未考虑图像的可变性,因此已经特别关注了我们方法的临床验证。在这项研究中,使用了礼帽变换来校正射线照片的强度不均匀性,从而生成了克服上述缺点的一致的训练集。该AAM使用96张带批注的图像进行了训练,并采用留一法的方案进行了测试,平均精度为2.48mm。结果表明,AAM与数学形态学相结合是临床头颅测量应用的合适方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号