Abstract: In this paper, we propose an original and statistical method for he sea-floor segmentation and its classification into five kinds of regions: sand, pebbles, rocks, ridges and dunes. The proposed method is based on the identification of the cast shadow shapes for each sea-bottom type and consists in four stages of processing. Firstly, the input image is segmented into two kinds of regions: shadow and sea-bottom reverberation. Secondly, the image of the contours of the detected cast shadows is partitioned into sub-windows from which a relevant geometrical feature vector is extracted. A pre-classification by a fuzzy classifier is thus required to initialize the third stage of processing. Finally, a Markov Random Field model is employed to specify homogeneity properties of the desired segmentation map. A Bayesian estimate of this map is computed using a deterministic relaxation algorithm. Reported experiments demonstrate that the proposed approach yields promising results to the problem of sea-floor classification. !16
展开▼