首页> 外文会议>Mathematical Modeling, Bayesian Estimation, and Inverse Problems >Markov random field model and fuzzy formalism-based data modeling for the sea-floor classification
【24h】

Markov random field model and fuzzy formalism-based data modeling for the sea-floor classification

机译:Markov随机场模型和基于模糊形式主义的海底分类数据建模。

获取原文
获取原文并翻译 | 示例

摘要

Abstract: In this paper, we propose an original and statistical method for he sea-floor segmentation and its classification into five kinds of regions: sand, pebbles, rocks, ridges and dunes. The proposed method is based on the identification of the cast shadow shapes for each sea-bottom type and consists in four stages of processing. Firstly, the input image is segmented into two kinds of regions: shadow and sea-bottom reverberation. Secondly, the image of the contours of the detected cast shadows is partitioned into sub-windows from which a relevant geometrical feature vector is extracted. A pre-classification by a fuzzy classifier is thus required to initialize the third stage of processing. Finally, a Markov Random Field model is employed to specify homogeneity properties of the desired segmentation map. A Bayesian estimate of this map is computed using a deterministic relaxation algorithm. Reported experiments demonstrate that the proposed approach yields promising results to the problem of sea-floor classification. !16
机译:摘要:本文提出了一种原始的统计方法,用于海底分割并将其分类为沙,卵石,岩石,山脊和沙丘这五类区域。所提出的方法基于对每种海底类型的投射阴影形状的识别,并且包括四个处理阶段。首先,将输入图像分为两种区域:阴影和海底混响。其次,将检测到的投射阴影的轮廓图像划分为多个子窗口,从中提取相关的几何特征向量。因此,需要由模糊分类器进行预分类以初始化处理的第三阶段。最后,采用马尔可夫随机场模型来指定所需分割图的同质性。使用确定性松弛算法计算该图的贝叶斯估计。报道的实验表明,所提出的方法对海底分类问题产生了可喜的结果。 !16

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号