首页> 外文会议>Machine Learning for Signal Processing, 2009. MLSP 2009 >Novelty detection with multivariate Extreme Value Theory, part II: An analytical approach to unimodal estimation
【24h】

Novelty detection with multivariate Extreme Value Theory, part II: An analytical approach to unimodal estimation

机译:多变量极值理论的新颖性检测,第二部分:单峰估计的一种分析方法

获取原文

摘要

Extreme Value Theory (EVT) describes the distribution of data considered extreme with respect to some generative distribution, effectively modelling the tails of that distribution. In novelty detection, we wish to determine if data are “normal” with respect to some model of normality. If that model consists of generative distributions, then EVT is appropriate for describing the behaviour of extrema generated from the model, and can be used to separate “normal” areas from “abnormal” areas of feature space in a principled manner. In a companion paper, we show that existing work in the use of EVT for novelty detection does not accurately describe the extrema of multimodal, multivariate distributions and propose a numerical method for overcoming such problems. In this paper, we introduce an analytical approach to obtain closed-form solutions for the extreme value distributions of multivariate Gaussian distributions and present an application to vital-sign monitoring.
机译:极值理论(EVT)描述了相对于某些生成分布而言极端的数据分布,有效地建模了该分布的尾部。在新颖性检测中,我们希望确定关于某种正常性模型数据是否“正常”。如果该模型由生成分布组成,则EVT适用于描述从该模型生成的极值的行为,并且可以用原理上的方式将“正常”区域与特征空间的“异常”区域分开。在同伴论文中,我们显示了使用EVT进行新颖性检测的现有工作无法准确描述多峰,多变量分布的极值,并提出了解决此类问题的数值方法。在本文中,我们介绍了一种分析方法来获取多元高斯分布的极值分布的闭式解,并将其应用于生命体征监测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号