首页> 外文期刊>Mechanical systems and signal processing >Novelty detection by multivariate kernel density estimation and growing neural gas algorithm
【24h】

Novelty detection by multivariate kernel density estimation and growing neural gas algorithm

机译:多元核密度估计和增长神经气体算法的新颖性检测

获取原文
获取原文并翻译 | 示例

摘要

One of the underlying assumptions when using data-based methods for pattern recognition in diagnostics or prognostics is that the selected data sample used to train and test the algorithm is representative of the entire dataset and covers all combinations of parameters and conditions, and resulting system states. However in practice, operating and environmental conditions may change, unexpected and previously unanticipated events may occur and corresponding new anomalous patterns develop. Therefore for practical applications, techniques are required to detect novelties in patterns and give confidence to the user on the validity of the performed diagnosis and predictions. In this paper, the application of two types of novelty detection approaches is compared: a statistical approach based on multivariate kernel density estimation and an approach based on a type of unsupervised artificial neural network, called the growing neural gas (GNG). The comparison is performed on a case study in the field of railway turnout systems. Both approaches demonstrate their suitability for detecting novel patterns. Furthermore, GNG proves to be more flexible, especially with respect to dimensionality of the input data and suitability for online learning.
机译:在诊断或预测中使用基于数据的方法进行模式识别时的基本假设之一是,用于训练和测试算法的所选数据样本代表了整个数据集,并涵盖了参数和条件以及结果系统状态的所有组合。但是在实践中,操作和环境条件可能会发生变化,可能会发生意外和以前无法预料的事件,并且会出现相应的新异常模式。因此,对于实际应用,需要技术来检测图案中的新颖性并向用户提供对所执行的诊断和预测的有效性的信心。在本文中,比较了两种新颖性检测方法的应用:基于多元核密度估计的统计方法和基于一种称为生长神经气体(GNG)的无监督人工神经网络的方法。比较是在铁路道岔系统领域的案例研究中进行的。两种方法都证明了它们适用于检测新颖模式。此外,事实证明,GNG更灵活,特别是在输入数据的维数和适用于在线学习方面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号