【24h】

Outlier Detection with Kernel Density Functions

机译:具有内核密度功能的异常值检测

获取原文
获取原文并翻译 | 示例

摘要

Outlier detection has recently become an important problem in many industrial and financial applications. In this paper, a novel unsupervised algorithm for outlier detection with a solid statistical foundation is proposed. First we modify a nonparametric density estimate with a variable kernel to yield a robust local density estimation. Outliers are then detected by comparing the local density of each point to the local density of its neighbors. Our experiments performed on several simulated data sets have demonstrated that the proposed approach can outperform two widely used outlier detection algorithms (LOF and LOCI).
机译:离群检测最近已成为许多工业和金融应用中的重要问题。本文提出了一种新的无监督算法,该算法具有扎实的统计基础。首先,我们用可变核修改非参数密度估计,以产生鲁棒的局部密度估计。然后通过将每个点的局部密度与其相邻点的局部密度进行比较来检测异常值。我们在几个模拟数据集上进行的实验表明,该方法可以胜过两种广泛使用的离群值检测算法(LOF和LOCI)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号