首页> 外文会议>Machine Learning and Applications, 2009. ICMLA '09 >Regularizing the Local Similarity Discriminant Analysis Classifier
【24h】

Regularizing the Local Similarity Discriminant Analysis Classifier

机译:正则化局部相似度判别分析分类器

获取原文

摘要

We investigate parameter-based and distribution-based approaches to regularizing the generative, similarity-based classifier called local similarity discriminant analysis classifier (local SDA). We argue that regularizing distributions rather than parameters can both increase the model flexibility and decrease estimation variance while retaining the conceptual underpinnings of the local SDA classifier. Experiments with four benchmark similarity-based classification datasets show that the proposed regularization significantly improves classification performance compared to the local SDA classifier, and the distribution-based approach improves performance more consistently than the parameter-based approaches. Also, regularized local SDA can perform significantly better than similarity-based SVM classifiers, particularly on sparse and highly nonmetric similarities.
机译:我们研究基于参数和基于分布的方法来规范化生成的,基于相似度的分类器,称为局部相似度判别分析分类器(local SDA)。我们认为,对分布而非参数进行正则化既可以增加模型的灵活性,又可以减少估计方差,同时保留本地SDA分类器的概念基础。使用四个基于基准相似性的分类数据集进行的实验表明,与基于本地SDA的分类器相比,提出的正则化显着提高了分类性能,并且基于分布的方法比基于参数的方法更加一致地提高了性能。而且,正规化的本地SDA可以比基于相似度的SVM分类器明显更好,尤其是在稀疏和高度非度量相似度上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号