首页> 外文OA文献 >A Large Dimensional Analysis of Regularized Discriminant Analysis Classifiers
【2h】

A Large Dimensional Analysis of Regularized Discriminant Analysis Classifiers

机译:正则判别分析分类器的大维分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This article carries out a large dimensional analysis of standard regularized discriminant analysis classifiers designed on the assumption that data arise from a Gaussian mixture model with different means and covariances. The analysis relies on fundamental results from random matrix theory (RMT) when both the number of features and the cardinality of the training data within each class grow large at the same pace. Under mild assumptions, we show that the asymptotic classification error approaches a deterministic quantity that depends only on the means and covariances associated with each class as well as the problem dimensions. Such a result permits a better understanding of the performance of regularized discriminant analsysis, in practical large but finite dimensions, and can be used to determine and pre-estimate the optimal regularization parameter that minimizes the misclassification error probability. Despite being theoretically valid only for Gaussian data, our findings are shown to yield a high accuracy in predicting the performances achieved with real data sets drawn from the popular USPS data base, thereby making an interesting connection between theory and practice.
机译:本文对标准正则判别分析分类器进行了大范围的分析,这些分类器的设计假设是数据来自具有不同均值和协方差的高斯混合模型。当每个班级内训练数据的特征数量和基数都以相同的速度增长时,该分析依赖于随机矩阵理论(RMT)的基本结果。在温和的假设下,我们表明渐近分类误差接近确定性数量,该数量仅取决于与每个类别相关的均值和协方差以及问题的维度。这样的结果可以更好地理解正则化判别分析在实际较大但有限的尺寸中的性能,并且可以用于确定和预先估计使正分类误差概率最小的最佳正则化参数。尽管从理论上讲仅对高斯数据有效,但我们的发现仍显示出很高的准确性,即能预测从流行的USPS数据库中提取的真实数据集所实现的性能,从而在理论与实践之间建立了有趣的联系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号