首页> 外文会议>Machine intelligence and bio-inspired computation: theory and applications VIII >Analysis of large-scale distributed knowledge sources via autonomous cooperative graph mining
【24h】

Analysis of large-scale distributed knowledge sources via autonomous cooperative graph mining

机译:基于自主合作图挖掘的大规模分布式知识源分析

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a model for processing distributed relational data across multiple autonomous heterogeneous computing resources in environments with limited control, resource failures, and communication bottlenecks. Our model exploits dependencies in the data to enable collaborative distributed querying in noisy data. The collaboration policy for computational resources is efficiently constructed from the belief propagation algorithm. To scale to large data sizes, we employ a combination of priority-based filtering, incremental processing, and communication compression techniques. Our solution achieved high accuracy of analysis results and orders of magnitude improvements in computation time compared to the centralized graph matching solution.
机译:在本文中,我们提出了一种在控制受限,资源故障和通信瓶颈的环境中处理跨多个自治异构计算资源的分布式关系数据的模型。我们的模型利用数据中的依存关系来启用嘈杂数据中的协作式分布式查询。从信念传播算法可以有效地构建用于计算资源的协作策略。为了扩展到大数据量,我们采用了基于优先级的过滤,增量处理和通信压缩技术的组合。与集中式图形匹配解决方案相比,我们的解决方案实现了高精度的分析结果,并在计算时间上提高了数量级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号