首页> 外文会议>Latent variable analysis and signal separation >Classifying Healthy Children and Children with Attention Deficit through Features Derived from Sparse and Nonnegative Tensor Factorization Using Event-Related Potential
【24h】

Classifying Healthy Children and Children with Attention Deficit through Features Derived from Sparse and Nonnegative Tensor Factorization Using Event-Related Potential

机译:使用事件相关电位通过稀疏和非负张量因子分解产生的特征对健康儿童和注意缺陷的儿童进行分类

获取原文
获取原文并翻译 | 示例

摘要

In this study, we use features extracted by Nonnegative Tensor Factorization (NTF) from event-related potentials (ERPs) to discriminate healthy children and children with attention deficit (AD). The peak amplitude of an ERP has been extensively used to discriminate different groups of subjects for the clinical research. However, such discriminations sometimes fail because the peak amplitude may vary severely with the increased number of subjects and wider range of ages and it can be easily affected by many factors. This study formulates a framework, using NTF to extract features of the evoked brain activities from time-frequency represented ERPs. Through using the estimated features of a negative ERP-mismatch negativity, the correct rate on the recognition between health children and children with AD approaches to about 76%. However, the peak amplitude did not discriminate them. Hence, it is promising to apply NTF for diagnosing clinical children instead of measuring the peak amplitude.
机译:在这项研究中,我们使用非负张量因子分解(NTF)从事件相关电位(ERP)中提取的特征来区分健康儿童和具有注意缺陷(AD)的儿童。 ERP的峰幅度已被广泛用于区分不同组的受试者进行临床研究。但是,这种区分有时会失败,因为峰值幅度可能会随着对象数量的增加和年龄范围的扩大而发生严重变化,并且很容易受到许多因素的影响。这项研究制定了一个框架,使用NTF从时频表示的ERP中提取诱发的大脑活动的特征。通过使用负ERP失配阴性的估计特征,健康儿童和患有AD的儿童之间的正确识别率接近76%。但是,峰值幅度不能区分它们。因此,有希望将NTF应用于诊断临床儿童而不是测量峰值幅度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号