首页> 外文会议>Iranian Conference on Signal Processing and Intelligent Systems >Estimation of 2017 Iran’s Presidential Election Using Sentiment Analysis on Social Media
【24h】

Estimation of 2017 Iran’s Presidential Election Using Sentiment Analysis on Social Media

机译:使用社交媒体上的情绪分析估算2017年伊朗总统大选

获取原文

摘要

Nowadays with growth of social media, they become a part of every man's life; so, they can be used in analysis and prediction tasks. People share their feelings, opinion and viewpoints on these media. One of the most important uses of social media is in national elections. In days near the election, people share their opinions, candidates share their plans and channels try to broadcast election events. So, data scientists can analyze these widely broadcasting messages to predict the election results. In this paper, we propose using both text and meta data analysis methods including sentiment analysis of hashtags and messages, time and reputation analysis to predict Iran's 2017 presidential election. We used sentiment analysis of messages on words with positive and negative polarities for text analysis and hashtags to determine the polarity of messages for metadata analysis. In addition, we used time analysis to weight messages score by their closeness to the election. Finally, we used reputation analysis of messages to calculate the impact of messages on people's opinion. For doing so, we used the number of views on telegram messages and numbers of members of the channels to weight messages by an appropriate weight. Our experiments on twits and telegram data show that the proposed model achieved 97.3% accuracy compares to the real results of the election.
机译:如今,随着社交媒体的发展,它们已成为每个人生活的一部分。因此,它们可以用于分析和预测任务。人们在这些媒体上分享他们的感受,见解和观点。社交媒体最重要的用途之一是在全国大选中。在选举临近的日子里,人们分享他们的意见,候选人分享他们的计划,并尝试广播选举活动。因此,数据科学家可以分析这些广为传播的消息以预测选举结果。在本文中,我们建议同时使用文本和元数据分析方法,包括对标签和消息的情绪分析,时间和声誉分析,以预测伊朗2017年总统大选。我们对带有正负极性的单词的消息进行情感分析,以进行文本分析和主题标签,以确定用于元数据分析的消息的极性。另外,我们使用时间分析来根据邮件与选举的接近程度对邮件评分进行加权。最后,我们使用消息的信誉分析来计算消息对人们意见的影响。为此,我们使用了有关电报消息的视图数和通道成员数来对消息进行适当的加权。我们在推特和电报数据上的实验表明,与选举的真实结果相比,该模型的准确率达到97.3%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号