首页> 外文期刊>Intelligent data analysis >Twitter sentiment analysis for the estimation of voting intention in the 2017 Chilean elections
【24h】

Twitter sentiment analysis for the estimation of voting intention in the 2017 Chilean elections

机译:2017年智利选举中投票意图估计的推特情绪分析

获取原文
获取原文并翻译 | 示例

摘要

this paper, we apply sentiment analysis methods in the context of the first round of the 2017 Chilean elections. The purpose of this work is to estimate the voting intention associated with each candidate in order to contrast this with the results from classical methods (e.g., polls and surveys). The data are collected from Twitter, because of its high usage in Chile and in the sentiment analysis literature. We obtained tweets associated with the three main candidates: Sebastian Pinera (SP), Alejandro Guillier (AG) and Beatriz Sanchez (BS).For each candidate, we estimated the voting intention and compared it to the traditional methods. To do this, we first acquired the data and labeled the tweets as positive or negative. Afterward, we built a model using machine learning techniques. The classification model had an accuracy of 76.45% using support vector machines, which yielded the best model for our case. Finally, we use a formula to estimate the voting intention from the number of positive and negative tweets for each candidate. For the last period, we obtained a voting intention of 35.84% for SP, compared to a range of 34-44% according to traditional polls and 36% in the actual elections. For AG we obtained an estimate of 37%, compared with a range of 15.40% to 30.00% for traditional polls and 20.27% in the elections. For BS we obtained an estimate of 27.77%, compared with the range of 8.50% to 11.00% given by traditional polls and an actual result of 22.70% in the elections. These results are promising, in some cases providing an estimate closer to reality than traditional polls. Some differences can be explained due to the fact that some candidates have been omitted, even though they held a significant number of votes.
机译:本文,我们在2017年智利选举的第一轮背景下应用了情绪分析方法。这项工作的目的是估计与每个候选人相关的投票意图,以便将其与古典方法(例如,民意调查和调查)对比这一点。由于其在智利和情感分析文献中的使用率高,因此从Twitter收集了数据。我们获得了与三个主要候选人相关的推文:Sebastian Pinera(SP),Alejandro Guillier(AG)和Beatriz Sanchez(BS)。我们估计了投票意图并将其与传统方法相比。为此,我们首先获得了数据并将推文标记为正或负面。之后,我们使用机器学习技术建立了模型。分类模型使用支持向量机的精度为76.45%,从而为我们的案例产生了最佳模型。最后,我们使用公式来估计每个候选人的正面和负推文数量的投票意图。在过去的一段时间内,我们获得了35.84%的投票意图,而根据传统民意调查的范围为34-44%,实际选举中的36%。对于AG,我们获得了37%的估计,而传统民意调查的范围为15.40%至30.00%,选举中的20.27%。对于BS,我们获得了27.77%的估计,与传统民意调查给​​出的8.50%至11.00%的范围,选举中的22.70%的实际结果。这些结果在有希望的情况下,在某些情况下,提供比传统民意调查更接近现实的估计。由于一些候选人被省略了一些候选人,可以解释一些差异,即使他们持有大量的投票。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号