首页> 外文会议>IPC Printed Circuits Expo, Apex, and the Designers Summit; 20070220-22; Los Angeles,CA(US) >New Methods to Efficiently Test the Reliability of Plated Vias and to Model Plated Via Life from Laminate Material Data
【24h】

New Methods to Efficiently Test the Reliability of Plated Vias and to Model Plated Via Life from Laminate Material Data

机译:通过层压材料数据有效测试镀层通孔的可靠性并模拟镀层通孔寿命的新方法

获取原文
获取原文并翻译 | 示例

摘要

This paper continues work by Sun Microsystems and the University of Maryland, CALCE to predict plated through via life using laminate material properties, plated copper material properties, and the physical via geometry to model via life. The new method presented in this paper uses non-linear laminate material properties and a damage-fatigue model to predict the accumulated damage to a plated through via as it is thermally cycled through assembly and field life conditions. Copper is a ductile metal so it is possible to construct a Log-Stress versus Log-Life plot that follows an Inverse Power Law (IPL). The key to doing a Log-Stress versus Log-Life plot is developing the relationship of stress versus temperature of the laminate material. Use of a Log-Stress versus Log-Life plot allows increased testing efficiency since you can perform an accurate life analysis by testing at only the high and low temperature extremes. Once the Log-S versus Log-N plot is constructed, it is possible to predict plated through via life over a wide range of temperatures. For this paper, we will use thermal cycle to failure test data obtained from Interconnect Stress Test (IST), but the analytical methods developed apply equally to other thermal cycle methods like Highly Accelerated Thermal Shock (HATS) and Air-to-Air Thermal Shock (AATS). Last, a Finite Element Model simulation is conducted that uses material properties that are easy to obtain and is then validated against the large database from IST testing at multiple temperatures. Once the Finite Element Model validation is complete, the model is used to make assembly and field life predictions for two case studies involving thick, complex printed wiring boards.
机译:本文继续了Sun Microsystems和马里兰大学CALCE的工作,以使用层压板材料特性,镀铜材料特性和物理通孔几何形状来预测通孔寿命,以预测通孔寿命。本文介绍的新方法利用非线性层压材料的特性和损伤疲劳模型来预测镀通孔在组装和现场使用条件下的热循环过程中累积的损坏。铜是一种易延展的金属,因此可以构造遵循逆幂定律(IPL)的对数应力与对数寿命曲线。进行对数应力与对数寿命的关系图的关键是要开发出应力与层压材料温度之间的关系。使用对数应力与对数寿命图可以提高测试效率,因为您可以通过仅在高温和低温极限下进行测试来执行准确的寿命分析。一旦构建了Log-S与Log-N图,就可以在很宽的温度范围内预测通孔寿命。在本文中,我们将使用热循环来测试从互连应力测试(IST)获得的故障测试数据,但是开发的分析方法同样适用于其他热循环方法,例如高度加速热冲击(HATS)和空对空热冲击(AATS)。最后,进行了有限元模型仿真,该仿真使用易于获得的材料特性,然后针对多个温度下IST测试的大型数据库进行了验证。有限元模型验证完成后,该模型将用于两个案例研究的组装和现场寿命预测,其中涉及厚而复杂的印刷线路板。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号