【24h】

Speech Emotion Recognition Based on Multi-Task Learning

机译:基于多任务学习的语音情感识别

获取原文

摘要

The complexity of emotion generation, expression, and data annotation make emotion recognition very challenging. As a kind of transfer learning, multi-task learning can aggregate multiple related corpora to achieve data sharing, and achieve the feature level sharing by utilizing the correlation of tasks, improving the training efficiency and accuracy. In this paper, we investigate the application of multi-task learning in the field of speech emotion recognition, including the model analysis, the database selection and the feature extraction. And the key research points of the research are proposed.
机译:情绪生成,表达和数据注释的复杂性使情绪识别非常具有挑战性。多任务学习作为一种转移学习,可以聚合多个相关的语料库以实现数据共享,并利用任务的相关性实现特征层次的共享,提高训练效率和准确性。在本文中,我们研究了多任务学习在语音情感识别领域的应用,包括模型分析,数据库选择和特征提取。并提出了研究的重点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号