首页> 外文会议>International Workshop on Engineering Stochastic Local Search Algorithms(SLS 2007); 20070906-08; Brussels(BE) >Easy Analyzer: An Object-Oriented Framework for the Experimental Analysis of Stochastic Local Search Algorithms
【24h】

Easy Analyzer: An Object-Oriented Framework for the Experimental Analysis of Stochastic Local Search Algorithms

机译:Easy Analyzer:用于随机局部搜索算法实验分析的面向对象框架

获取原文
获取原文并翻译 | 示例

摘要

One of the aspects of applying software engineering to Stochastic Local Search (SLS) is the principled analysis of the features of the problem instances and the behavior of SLS algorithms, which-because of their stochastic nature-might need sophisticated statistical tools. In this paper we describe EasyAnalyzer, an object-oriented framework for the experimental analysis of SLS algorithms, developed in the C++ language. EasyAnalyzer integrates with EasyLocal+ + , a framework for the development of SLS algorithms, in order to provide a unified development and analysis environment. Moreover, the tool has been designed so that it can be easily interfaced also with SLS solvers developed using other languages/tools and/or with command-line executables. We show an example of the use of EasyAnalyzer applied to the analysis of SLS algorithms for the k-GraphColoring problem.
机译:将软件工程应用于随机局部搜索(SLS)的方面之一是对问题实例的特征和SLS算法的行为进行原则性分析,这是因为它们的随机性可能需要复杂的统计工具。在本文中,我们描述EasyAnalyzer,这是一种用C ++语言开发的,用于SLS算法实验分析的面向对象的框架。 EasyAnalyzer与用于开发SLS算法的框架EasyLocal ++集成在一起,以提供统一的开发和分析环境。此外,该工具的设计使其可以轻松地与使用其他语言/工具开发的SLS求解器和/或命令行可执行文件进行交互。我们展示了一个使用EasyAnalyzer来分析k-GraphColoring问题的SLS算法的示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号