【24h】

Improved Object Tracking Using an Adaptive Colour Model

机译:使用自适应颜色模型改进的对象跟踪

获取原文
获取原文并翻译 | 示例

摘要

We present the results of a study to exploit a multiple colour space model (CSM) and variable kernels for object tracking in video sequences. The basis of our work is the mean shift algorithm; for a moving target, we develop a procedure to adaptively change the CSM throughout a video sequence. The optional CSM components are ranked using a similarity distance within an inner (representing the object) and outer (representing the surrounding region) rectangle. Rather than use the standard, Epanechnikov kernel, we have also used a kernel weighted by the normalized Chamfer distance transform to improve the accuracy of target representation and localization, minimising the distance between the two distributions of foreground and background using the Bhattacharya coefficient. To define the target shape in the rectangular window, either regional segmentation or background-difference imaging, dependent on the nature of the video sequence, has been used. Experimental results show the improved tracking capability and versatility of the algorithm in comparison with results using fixed colour models and standard kernels.
机译:我们提出了一项研究结果,以利用多色彩空间模型(CSM)和可变内核对视频序列中的对象进行跟踪。我们工作的基础是均值漂移算法;对于运动目标,我们开发了一种程序来在整个视频序列中自适应地更改CSM。使用内部(代表对象)和外部(代表周围区域)矩形内的相似距离对可选CSM组件进行排序。除了使用标准的Epanechnikov内核外,我们还使用归一化Chamfer距离变换加权的内核来提高目标表示和定位的准确性,并使用Bhattacharya系数最小化前景和背景两个分布之间的距离。为了在矩形窗口中定义目标形状,根据视频序列的性质,使用了区域分割或背景差异成像。实验结果表明,与使用固定颜色模型和标准内核的结果相比,该算法具有更高的跟踪能力和多功能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号