首页> 外文会议>International Workshop on Computer Science Logic(CSL 2007); 20070911-15; Lausanne(CH) >From Proofs to Focused Proofs: A Modular Proof of Focalization in Linear Logic
【24h】

From Proofs to Focused Proofs: A Modular Proof of Focalization in Linear Logic

机译:从证明到集中证明:线性逻辑中的模块化模块化证明

获取原文
获取原文并翻译 | 示例

摘要

Probably the most significant result concerning cut-free sequent calculus proofs in linear logic is the completeness of focused proofs. This completeness theorem has a number of proof theoretic applications - e.g. in game semantics, Ludics, and proof search - and more computer science applications - e.g. logic programming, call-by-name/value evaluation. Andreoli proved this theorem for first-order linear logic 15 years ago. In the present paper, we give a new proof of the completeness of focused proofs in terms of proof transformation. The proof of this theorem is simple and modular: it is first proved for MALL and then is extended to full linear logic. Given its modular structure, we show how the proof can be extended to larger systems, such as logics with induction. Our analysis of focused proofs will employ a proof transformation method that leads us to study how focusing and cut elimination interact. A key component of our, proof is the construction of a focalization graph which provides an abstraction over how focusing can be organized within a given cut-free proof. Using this graph abstraction allows us to provide a detailed study of atomic bias assignment in a way more refined that is given in Andreoli's original proof. Permitting more flexible assignment of bias will allow this completeness theorem to help establish the completeness of a number of other automated deduction procedures. Focalization graphs can be used to justify the introduction of an inference rule for multifocus derivation: a rule that should help us better understand the relations between sequentially and concurrency in linear logic.
机译:关于线性逻辑中的无割顺序演算证明,最重要的结果可能是聚焦证明的完整性。完备性定理有许多证明理论应用-例如游戏语义,Ludics和证明搜索-以及更多计算机科学应用-例如逻辑编程,按名称/值调用。 15年前,Andreoli证明了一阶线性逻辑定理。在本文中,我们从证明变换的角度给出了焦点证明完整性的新证明。该定理的证明是简单且模块化的:首先针对MALL进行证明,然后扩展至全线性逻辑。鉴于其模块化的结构,我们将展示如何将证明扩展到更大的系统,例如具有归纳逻辑的系统。我们对重点证明的分析将采用证明变换方法,该方法使我们研究重点和削减消除之间的相互作用。我们的证明的一个关键组成部分是构建聚焦图,该图提供了在给定的免裁剪证明中如何组织聚焦的抽象。使用这种图形抽象使我们能够以Andreoli原始证明中给出的更精细的方式来详细研究原子偏向。允许更灵活地分配偏差将允许该完整性定理有助于建立许多其他自动推论程序的完整性。焦点图可用于证明引入多焦点推导规则的合理性:该规则应有助于我们更好地理解线性逻辑中顺序和并发之间的关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号